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Problem set

1. Isochrone potential and Bertrand’s theorem.
We consider the dynamics of a test particle within a central potential, Φ(r). Such a motion is generically

integrable, and is characterised by the two actions, Jr and Jφ=L, respectively the radial and azimuthal actions,
with associated orbital frequencies Ωr and Ωφ. Show that

(
∂Jr
∂E

)

L

=
1

Ωr
;

(
∂Jr
∂L

)

E

= −Ωφ

Ωr
, (1)

with E and L, respectively the energy and the angular momentum of the orbit.
In Henon (1959), Michel Hénon introduced the isochrone potential as the central potential

Φ(r) = − GMtot

b+
√
b2 + r2

, (2)

with b the system’s scale length. He showed in particular that this potential is the most generic potential for
whichΩr(E,L) = Ωr(E), i.e. for which the radial frequency is only a function ofE. For that particular potential,
one finds

Ωr =
(−2E)3/2

GMtot
;

Ωφ

Ωr
=

1

2

(
1 +

L√
L2 + 4GMtotb

)
. (3)

Reyling on the fact that partial derivatives commute, or otherwise, use the isochrone potential to prove
Bertrand’s theorem:

The only central potentials for which all bound orbits are closed are the Keplerian and harmonic potentials.

2. Response matrix and dielectric function
The response matrix of a self-gravitating system is given by

M̃pq(ω) = (2π)d
∑

k

∫
dJ

k · ∂F/∂J
ω − k ·Ω(J)

ψ
(p)∗
k (J)ψ

(q)
k (J). (4)

In this exercise, we set out to show that for homogeneous systems this response matrix reduces to the dielectric
function of plasma physics.

Assume that the system is placed within a periodic 3D box of sizeL. We also assume that the mean potential
vanishes, i.e. Φ = 0, so that unperturbed trajectories are straight lines. Show that the system’s angle-action
coordinates and the associated orbital frequencies are given by

θ =
2π

L
x ; J =

L

2π
v ; Ω =

2π

L
v. (5)

The system’s instantaneous potential and densities are linked by Poisson’s equation, ∆Φ = 4πGρ, as well
as by the self-consistent relation, Φ(x) =

∫
dx′ ρ(x′)U(x,x′), with U(x,x′) the gravitational pairwise interac-

tion potential. Making use of the 2π-periodicity of the system, and assuming that U(θ,θ′) is translationally
invariant, show that we can write

U(θ,θ′) = −
∑

p∈Z3\{0}

ψ(p)(θ)ψ(p)∗(θ′) with ψ(p)(θ) =

√
G

Lπ

1

|p| e
ip·θ. (6)

Show that the response matrix from Eq. (4) then becomes

M̃pq(ω) = δpq

GL2

π

1

|p|2
∫
dv

p · ∂F/∂v
ω − p · v , (7)

with ω = ωL/(2π).
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Assume that the system’s mean distribution function (DF) follows the Maxwellian distribution

F (v) = F (|v|) = ρ0
(2πσ2)3/2

e−|v|2/(2σ2), (8)

with ρ0 the system’s mean density, and σ the velocity dispersion. Show that the previous expression of the
response matrix reduces to

M̃pq(ω) = δpq

(
L

LJ

)2
1

|p|2
[
1 + ζ Z(ζ)

]
, (9)

with the dimensionless frequency ζ = ω/(
√
2|p|σ), and Z(ζ) = π−1/2

∫
du e−u2

/(u− ζ) the plasma dispersion

function. In that expression, we also introduced the Jeans length as LJ =
√
(πσ2)/(Gρ0).

What is the main difference between this expression for a self-gravitating system, and the analog one for
an electrostatic plasma? What happens for a system with L > LJ?

3. BBGKY hierarchy and inhomogeneous Landau equation
In this exercise, we set out to recover the inhomogeneous Landau equation through the direct resolution

of the BBGKY hierarchy. We consider a Hamiltonian system in a phase space of dimension 2d, denoting the
phase space coordinates as w = (q,p). We assume that the system is composed of N particles, of individual
mass m =Mtot/N , embedded in some external potential Uext(w), and coupled through each other via the
long-range pairwise symmetric interaction potential U(w,w′). Under these assumptions, the system’sN -body
Hamiltonian reads

HN (w1, ...,wN ) =

N∑

i=1

Uext(wi) +

N∑

i<j

mU(wi,wj), (10)

where wi stands for the phase space coordinates of the ith particle.
a. The BBGKY hierarchy.
We introduce the system’s N -body probability distribution function (PDF), PN (w1, ...,wN , t), normalised

so that
∫
dw1 ...dwNPN = 1, and assumed to be invariant under permutations of the particles. Show that the

evolution of PN is governed by the Liouville equation

∂PN

∂t
+

[
PN , HN

]

N

= 0, (11)

where the N -body Poisson bracket is defined as

[
PN , HN

]

N

=

N∑

i=1

[
PN , HN

]

wi

with

[
PN , HN

]

w

=
∂PN

∂q
· ∂HN

∂p
− ∂PN

∂p
· ∂HN

∂q
, (12)

so that [ · , · ]w stands for the Poisson bracket w.r.t. the coordinate w.
In order to reduce the dimension of the functional space considered, we define the reduced n-body DFs as

Fn(w1, ...,wn) = mn N !

(N − n)!

∫
dwn+1 ... dwN PN . (13)

Show that for arbitrary functions f(w) and h(w), the Poisson bracket satisfies

∫
dw

[
f(w), h(w)

]

w

= 0. (14)

Using that property, show that Fn evolves according to

∂Fn

∂t
+

[
Fn, Hn

]

n

+

∫
dwn+1

[
Fn+1, δHn+1

]

n

= 0, (15)

where the definitions of Hn and [ · , · ]n follow from Eqs. (10) and Eq. (12), and we have introduced the interac-
tion Hamiltonian, δHn+1, as

δHn+1(w1, ...,wn+1) =

n∑

i=1

U(wi,wn+1). (16)

b. The truncated BBGKY equations.
Define the system’s 2-body correlation function G2 from F2 as

F2(w,w
′) = F1(w)F1(w

′) +G2(w,w
′). (17)
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By computing
∫
dwF1(w) and

∫
dwdw′G2(w,w

′), show that one has |G2|≪|F1| w.r.t. the small parameter 1/N .
What is an appropriate definition of G3 to subsequently have |G3|≪|G2|≪|F1|?

At order 1/N , the dynamics of F = F1 and G = G2 are given by

∂F (w)

∂t
+

[
F (w), H(w)

]

w

+

∫
dw′

[
G(w,w′), U(w,w′)

]

w

= 0. (18)

and

∂G(w,w′)

∂t
+

{[
G(w,w′), H(w)

]

w

+m

[
F (w)F (w′), U(w,w′)

]

w

+

∫
dw′′

[
F (w)G(w′,w′′), U(w,w′′)

]

w

}

w↔w′

= 0 (19)

where we have introduced the symmetrising notation {f(w,w′)}(w↔w′)=f(w,w
′)+f(w′,w), and did not

write explicitly the time dependence to shorten the notations. In these equations, we have also introduced
the system’s mean Hamiltonian as

H(w) = Uext(w) +

∫
dw′ U(w,w′)F (w′). (20)

Assume that the mean system is integrable, so that there exists some angle-action coordinates w = (θ,J) so
that F (w) = F (J), andH(w) = H(J). Assume also that the system is dynamically hot, so that collective effects
can be neglected, i.e. so that correlations are not submitted to the potential perturbations that they generate
themselves. In that limit, show that the two previous evolution equations can be rewritten as

∂F (J)

∂t
+

∂

∂J
·
[∫

dθ

(2π)d

∫
dw′ ∂G(w,w

′)

∂θ
U(w,w′)

]
= 0, (21)

and
∂G(w,w′)

∂t
+

{
∂G(w,w′)

∂θ
·Ω(J)−mF (J′)

∂F (J)

∂J
· ∂U(w,w′)

∂θ

}

w↔w′

= 0, (22)

where Ω(J) are the mean-field orbital frequencies.
c. The dynamics of correlations.
Relying on the 2π-periodicity of the angles θ, we expand the correlation functionG(w,w′) and the pairwise

interaction, U(w,w′), as (pay attention to the conventions)

G(w,w′) =
∑

k,k′

Gkk′(J,J′) ei(k·θ+k′·θ′),

U(w,w′) =
∑

k,k′

ψkk′(J,J′) ei(k·θ−k′·θ′). (23)

Justify that F (J) and Ω(J) can be taken to be constant on the timescale over which G(t) evolves. In that limit,
show that the time-evolution of the two-body correlation can be explicitly solved as

G−kk′(J,J′, t) = mψ∗
kk′(J,J′)

ei∆Ωt − 1

∆Ω

(
k′ · ∂

∂J′
− k· ∂

∂J

)
F (J)F (J′), (24)

where we have assumed that the particles are initially decorrelated, i.e. G(t = 0) = 0, and have introduced the
frequency resonance condition ∆Ω = k·Ω(J)− k′ ·Ω(J′).

d. The inhomogeneous Landau equation.
Similarly, show that Eq. (21) can be rewritten as

∂F (J)

∂t
= (2π)d

∂

∂J
·
[∑

k,k′

ik

∫
dJ′G−kk′(J,J′)ψkk′(J,J′)

]
. (25)

Relying on the asymptotic formula

lim
t→+∞

ei∆Ωt − 1

∆Ω
= −P

(
1

∆Ω

)
+ iπδD(∆Ω), (26)
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with P Cauchy’s principal value, recover the inhomogeneous Landau equation

∂F (J)

∂t
= −π(2π)dm ∂

∂J
·
[∑

k,k′

k

∫
dJ′

∣∣ψkk′(J,J′)
∣∣2 δD(k·Ω(J)− k′ ·Ω(J′))

×
(
k′ · ∂

∂J′
− k· ∂

∂J

)
F (J)F (J′)

]
. (27)

4. Conservations, H-Theorem, and Balescu-Lenard equation
Up to prefactors, the total mass, energy, and entropy of a stellar system are given by

M(t) =

∫
dJF (J, t),

E(t) =

∫
dJH(J)F (J, t),

S(t) =

∫
dJ s(F (J, t)), (28)

where H(J) is the system’s mean Hamiltonian, and s(F ) = −F ln(F ) is Boltzmann’s entropy function. Show
that the Balescu-Lenard equation ensures the conservation of total mass and total energy, and satisfies a
H-Theorem, i.e. dS/dt ≥ 0. Should it exist, we introduce the inhomogeneous Boltzmann’s distribution as
FB(J) ∝ e−H(J). Compute ∂FB/∂t as driven by the Balescu-Lenard equation, and comment.

5. Kinetic blockings.
We consider a generic long-range interacting Hamiltonian system. Assume that the system is (i) one-

dimensional, i.e. d = 1, and (ii) with a symmetric pairwise interaction, i.e. the Fourier-transformed basis el-

ements satisfy ψ
(p)
k ∝ δpk . Show that the Balescu-Lenard equation can be rewritten as

∂F (J, t)

∂t
= −2π2m

∂

∂J

[∫
dJ ′

∣∣ψtot(J, J ′)
∣∣2 δD(Ω(J)− Ω(J ′))

(
∂

∂J ′
− ∂

∂J

)
F (J, t)F (J ′, t)

]
, (29)

and give the expression of the coupling coefficient
∣∣ψtot(J, J ′)

∣∣2.
Comment on what happens for a system with a monotonic frequency profile, J 7→ Ω(J).


