Kinetic theory of self-gravitating systems

Jean-Baptiste Fouvry, IAP fouvry@iap.fr

Oxford November 2020

Long-term relaxation

How do systems diffuse?

Local Brownian diffusion

Homogeneous **Plasma** diffusion

Inhomogeneous **Galaxy** diffusion

Fluctuation-Dissipation Theorem

Same process occur in galaxies, but:

Gravity is **long-range**

- + Stars follow orbits and resonate
- + Galaxies **amplify** perturbations

How do galaxies evolve on cosmic timescales?

Relaxation and Dynamics

How do stars evolve?

Ink in water

Stars in galaxies

Diffusion

How do systems diffuse?

Ink in water

Stars in a galaxy

Local interaction

Long-range interaction

Diffusion

How do systems diffuse?

Ink in water

Stars in a galaxy

Pairwise interaction

Collective interaction

Diffusion

How do systems diffuse?

Ink in water

Stars in a galaxy

Stochastic trajectory

Regular trajectory

The gravitational Balescu-Lenard equation

What does it require?

Where does it come from?

What is it?

Does it work?

What's next?

What does the Balescu-Lenard Eq. require?

+ Perturbed (effects of the environment)

Galactic evolution on cosmic timescales

What does it require?

Inhomogeneous

$$(\mathbf{x}, \mathbf{v})$$

$$\downarrow$$
 $(\boldsymbol{\theta}, \mathbf{J})$

Angle-Action coordinates

Relaxed

$$F = F(\mathbf{J}, t)$$

Quasi-stationary states

Resonant

$$\Omega(\mathbf{J}) = \partial H_0 / \partial \mathbf{J}$$

Fast/Slow timescale

Self-gravitating

Linear response theory

Discrete & Perturbed

 $\frac{1}{N}$

Finite-N effects

What does it require?

Inhomogeneous

$$(\mathbf{x}, \mathbf{v})$$

$$\downarrow$$

$$(\boldsymbol{\theta}, \mathbf{J})$$

Angle-Action coordinates

Relaxed

$$F = F(\mathbf{J}, t)$$

Quasi-stationary states

Resonant

$$\Omega(\mathbf{J}) = \partial H_0 / \partial \mathbf{J}$$

Fast/Slow timescale

Self-gravitating

Linear response theory

Discrete & Perturbed

Finite-N effects

Inhomogeneous systems

+ Label orbits with integrals of motion

 2π

+ Angle-Action coordinates

$$\begin{cases} \boldsymbol{\theta}(t) = \boldsymbol{\theta}_0 + t \, \boldsymbol{\Omega}(\mathbf{J}) \\ \mathbf{J}(t) = \text{cst.} \end{cases}$$

Trajectories become straight lines

+ Relaxation

$$\xrightarrow{\text{(few) } t_{\text{cross}}} F = F(\mathbf{J}, t)$$

+ Frequencies' commensurability : $\mathbf{n} \cdot \mathbf{\Omega}(\mathbf{J}) = 0$

Non-Resonant

Example: Orbits in a disc

Integrable orbits

$$\Phi_0 = \Phi_0(R, z)$$

$$\begin{cases} \boldsymbol{\theta}(t) = \boldsymbol{\theta}_0 + t \, \boldsymbol{\Omega}(\mathbf{J}) \\ \mathbf{J}(t) = \text{cst.} \end{cases}$$

Actions

$$\mathbf{J} = \left(J_{\phi}, J_r, J_z\right)$$

Frequencies

$$\mathbf{\Omega} = \left(\Omega_{\phi}, \Omega_{r}, \Omega_{z}\right)$$

What does it require?

Collective effects

Self-gravitating amplification

Gravitational polarisation essential to

- + Cause dynamical instabilities
- + Induce dynamical friction and mass segregation
- + Accelerate/Slow down secular evolution

Collective effects

Self-gravitating amplification

Gravitational polarisation essential to

- + Cause dynamical instabilities
- + Induce dynamical friction and mass segregation
- + Accelerate/Slow down secular evolution

Typical fate of a self-gravitating system

Where does the Balescu-Lenard Eq. come from?

Balescu-Lenard via Klimontovich

Describing one **realisation** in **phase space** $\mathbf{w} = (\mathbf{x}, \mathbf{v})$

$$\mathbf{w} = (\mathbf{x}, \mathbf{v})$$

Discrete DF

$$F_{d}(\mathbf{w}, t) = \sum_{i=1}^{N} m \, \delta_{D}(\mathbf{w} - \mathbf{w}_{i}(t))$$

3D gravitational systems
$$U_{\text{ext}} = \frac{|\mathbf{v}|^2}{\frac{2}{2}}$$

$$U = -\frac{G}{|\mathbf{x} - \mathbf{x}'|}$$

Discrete Hamiltonian
$$H_d(\mathbf{w}, t) = U_{ext}(\mathbf{w}) + \int d\mathbf{w}' F_d(\mathbf{w}', t) U(\mathbf{w}, \mathbf{w}')$$

Continuity equation in phase space

$$\frac{\partial F_{d}}{\partial t} + \frac{\partial}{\partial \mathbf{w}} \cdot \left(F_{d} \dot{\mathbf{w}} \right) = 0$$

Exact Klimontovich equation

$$\frac{\partial F_{\rm d}}{\partial t} + \left[F_{\rm d}, H_{\rm d} \right] = 0$$

Solving Klimontovich

Perturbative expansion

$$\begin{cases} F_{\rm d} = F_0 + \delta F & \text{with } \langle \delta F \rangle = 0, \\ H_{\rm d} = H_0 + \delta \Phi & \text{with } \langle \delta \Phi \rangle = 0. \end{cases}$$

Mean-field equilibrium

$$\begin{cases} F_0 = F_0(\mathbf{J}, t), \\ H_0 = H_0(\mathbf{J}, t). \end{cases}$$

Quasi-linear evolution equations

$$\frac{\partial \delta F}{\partial t} + \left[\delta F, H_0\right] + \left[F_0, \delta \Phi\right] = 0$$
$$\frac{\partial F_0}{\partial t} = -\left\langle \left[\delta F, \delta \Phi\right] \right\rangle$$

Angle-Action space

Timescale separation

$$\begin{cases} T_{\delta F} \simeq T_{\rm dyn} \\ T_{F_0} \simeq \left(\sqrt{N}\right)^2 \times T_{\delta F} \end{cases}$$

Dynamics of fluctuations

Fast evolution of perturbations (Linearised Klimontovich Eq.)

$$\frac{\partial \delta F}{\partial t} + \left[\delta F, H_0 \right] + \left[F_0, \delta \Phi \right] = 0$$

$$[\delta F, H_0]$$

Mean-field motion

$$[F_0, \delta\Phi]$$

Collective effects

Self-consistent amplification

$$\delta\Phi = \delta\Phi \left[\delta F\right]$$

Timescale separation

$$\begin{cases} F_0(\mathbf{J}) = \text{cst} \\ H_0(\mathbf{J}) = \text{cst} \end{cases}$$

Phase Mixing

Solving for the fluctuations

Linear amplification

$$\frac{\delta \tilde{F}_{\mathbf{k}}(\mathbf{J}, \boldsymbol{\omega})}{\mathrm{i}(\boldsymbol{\omega} - \mathbf{k} \cdot \boldsymbol{\Omega}(\mathbf{J}))} - \frac{\mathbf{k} \cdot \partial F_0 / \partial \mathbf{J}}{\boldsymbol{\omega} - \mathbf{k} \cdot \boldsymbol{\Omega}(\mathbf{J})} \frac{\delta \tilde{\Phi}_{\mathbf{k}}(\mathbf{J}, \boldsymbol{\omega})}{\boldsymbol{\omega} - \mathbf{k} \cdot \boldsymbol{\Omega}(\mathbf{J})}$$

Bare noise

Self-consistent amplification

with the **self-consistency**

$$\delta\Phi(\mathbf{w},t) = \int d\mathbf{w}' \frac{\delta F(\mathbf{w}',t)}{\delta V(\mathbf{w},\mathbf{w}')} U(\mathbf{w},\mathbf{w}')$$

Generic form of a Fredholm equation

$$\left[\delta\Phi(\mathbf{J})\right]_{\mathrm{dressed}} = \left[\delta\Phi(\mathbf{J})\right]_{\mathrm{bare}} + \int d\mathbf{J}' M(\mathbf{J}, \mathbf{J}') \left[\delta\Phi(\mathbf{J}')\right]_{\mathrm{dressed}}$$

Amplification kernel

Dressing of perturbations

$$\left[\delta\Phi(\omega)\right]_{\text{dressed}} \simeq \frac{\left[\delta\Phi(\omega)\right]_{\text{bare}}}{1-M(\omega)} = \frac{\left[\delta\Phi(\omega)\right]_{\text{bare}}}{\left[E(\omega)\right]}$$

Basis method
$$(\psi^{(p)}(\mathbf{w}), \rho^{(p)}(\mathbf{w}))$$

$$\begin{cases} \psi^{(p)}(\mathbf{w}) = \int d\mathbf{w}' U(\mathbf{w}, \mathbf{w}') \rho^{(p)}(\mathbf{w}'), \\ \int d\mathbf{w} \psi^{(p)}(\mathbf{w}) \rho^{(q)*}(\mathbf{w}) = -\delta_{pq}. \end{cases}$$

`Separable" pairwise interaction

$$U(\mathbf{w}, \mathbf{w}') = -\sum_{p} \psi^{(p)}(\mathbf{w}) \psi^{(p)*}(\mathbf{w}')$$

Plasmas

$$U(\mathbf{x}, \mathbf{x}') = \frac{1}{|\mathbf{x} - \mathbf{x}'|}$$

$$\simeq \int \frac{d\mathbf{k}}{|\mathbf{k}|^2} e^{i\mathbf{k}\cdot\mathbf{x}} e^{-i\mathbf{k}\cdot\mathbf{x}'}$$

Galaxies

$$\Delta \Phi = 4\pi G \rho$$

Poisson equation

Linear response theory

$$\left[\delta H(\omega)\right]_{\text{dressed}} = \frac{\left[\delta H(\omega)\right]_{\text{bare}}}{\left|E(\omega)\right|}$$

$$E_{pq}(\omega) = 1 - (2\pi)^d \sum_{\mathbf{k}} \int d\mathbf{J} \frac{\mathbf{k} \cdot \partial F_0 / \partial \mathbf{J}}{\omega - \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})} \psi_{\mathbf{k}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{k}}^{(q)}(\mathbf{J})$$

Dielectric function

 $E_{pq}(\omega)$

Two limits

$$E_{pq}(\omega) \simeq 0$$
 Cold regime

$$E_{pq}(\omega) \simeq 1$$
 Hot regime

Some properties

 $\sum_{\mathbf{k}}$

Sum over resonances

 $\int d\mathbf{J}$

Scan over orbital space

$$\omega - \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})$$

Resonant int.

$$\psi^{(p)} = \left| \operatorname{d}\mathbf{w}' U \rho^{(p)} \right|$$

Long-range int.

Dielectric function

Thermalisation

$$\left[\delta\Phi(t)\right]_{\text{trans.}}\simeq \mathrm{e}^{-s_{\mathrm{p}}t}$$

Dressed long-term diffusion

Secular evolution equation

$$\frac{\partial F_0}{\partial t} = -\left\langle \left[\delta F, \delta \Phi \right] \right\rangle$$

Dressing comes twice

$$\left[\delta\Phi\right]_{\text{dressed}} = \frac{\left[\delta\Phi\right]_{\text{bare}}}{\left|E(\omega)\right|}$$

$$\frac{\partial F_0}{\partial t} \simeq \frac{\left| \delta \Phi \right|_{\text{bare}}^2}{\left| E(\omega) \right|^2}$$

Bare Poisson shot noise

$$|\delta\Phi|_{\text{bare}} \simeq \frac{1}{\sqrt{N}}$$

$$T_{\rm relax} \simeq |E|^2 N T_{\rm dyn}$$

Collective effects can **drastically accelerate** orbital heating, in particular on **large scales**

The two components of diffusion

Secular evolution equation

$$\frac{\partial F_0}{\partial t} = -\left\langle \left[\delta F, \delta \Phi \right] \right\rangle = -\frac{\partial}{\partial \mathbf{J}} \cdot \mathbf{F}(\mathbf{J}, t)$$

Dynamics of **perturbations**

$$\delta \tilde{F}_{\mathbf{k}}(\mathbf{J},\omega) = -\frac{\delta F_{\mathbf{k}}(\mathbf{J},0)}{\mathrm{i}(\omega - \mathbf{k} \cdot \boldsymbol{\Omega}(\mathbf{J}))} - \frac{\mathbf{k} \cdot \partial F_0/\partial \mathbf{J}}{\omega - \mathbf{k} \cdot \boldsymbol{\Omega}(\mathbf{J})} \delta \tilde{\Phi}_{\mathbf{k}}(\mathbf{J},\omega)$$

Poisson noise

Potential fluctuations

Flux decomposition

$$\mathbf{F}(\mathbf{J},t) = \mathbf{F}_1(\mathbf{J},t) + \mathbf{F}_2(\mathbf{J},t)$$

Dynamical friction

$$\mathbf{F}_{1}(\mathbf{J}, t) \propto \left\langle \delta F(0) \, \delta \Phi \right\rangle$$
$$= \mathbf{D}_{1}(\mathbf{J}) \, F_{0}(\mathbf{J})$$

Diffusion

$$\mathbf{F}_{2}(\mathbf{J}, t) \propto \left\langle \delta \Phi \, \delta \Phi \right\rangle$$

$$= -\mathbf{D}_{2}(\mathbf{J}) \cdot \frac{\partial F_{0}}{\partial \mathbf{J}}$$

Backreaction to DF's perturbations

Correlations of the potential fluctuations 27

What is the Balescu-Lenard Eq.?

Balescu-Lenard equation

The master equation for self-induced orbital relaxation

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{1}{N} \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{D}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}'))}{|E_{\mathbf{k}\mathbf{k}'}(\mathbf{J}, \mathbf{J}', \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}))|^{2}} \times \left(\mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} - \mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} \right) F(\mathbf{J}, t) F(\mathbf{J}', t) \right]$$

Some properties

$$F(\mathbf{J},t)$$
 Orbital distorsion in action space

1/N Sourced by finite-N effects

$$\partial/\partial \mathbf{J}$$
. Divergence of a **diffusion flux**

(k, k') Discrete resonances

$$\int dJ'$$
 Scan of **orbital space**

$$\delta_D(\mathbf{k}\cdot\Omega(\mathbf{J})-\mathbf{k}'\cdot\Omega(\mathbf{J}'))$$
 Resonance cond.

$$1/|E_{\mathbf{k}\mathbf{k}'}(\mathbf{J},\mathbf{J}',\omega)|^2$$
 Dressed couplings

Fokker-Planck equation

- + **Test particle** of mass $m_t P(\mathbf{J}, t)$
- + Bath particles of mass $m_{\rm b} = M_{\rm tot}/N$ $F_0({\bf J},t)$

$$\frac{\partial P(\mathbf{J}, t)}{\partial t} = \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{D}(\mathbf{k} \cdot \Omega(\mathbf{J}) - \mathbf{k}' \cdot \Omega(\mathbf{J}'))}{|E_{\mathbf{k}\mathbf{k}'}(\mathbf{J}, \mathbf{J}', \mathbf{k} \cdot \Omega(\mathbf{J}))|^{2}} \right]$$

$$\times \left(\frac{m_{\rm b} \mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} - m_{\rm t} \mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} \right) P(\mathbf{J}, t) F_0(\mathbf{J}', t) \right]$$

Diffusion
$$m_b \mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}}$$

Vanishes in the collisionless limit $N \to +\infty$

 $\mathbf{D}_{\text{diff}} \propto \langle \delta \Phi(t) \, \delta \Phi(t') \rangle$

Sourced by correlations in the potential fluctuations

Friction
$$m_{\rm t} {\bf k}' \cdot \frac{\partial}{\partial {\bf J}'}$$

Induces mass segregation

$$\mathbf{D}_{\mathrm{fric}} \propto \langle \delta P(t) \, \delta \Phi(t') \rangle$$

Sourced by the backreaction of the test particle on the bath

Resonant encounters

$$\delta_{\! D}(\mathbf{k}\cdot \boldsymbol{\Omega}(\mathbf{J}) - \mathbf{k}'\cdot \boldsymbol{\Omega}(\mathbf{J}'))$$

Collisions are resonant, long-range, correlated

Dressed resonant encounters

$$\delta_{\!\scriptscriptstyle D}(\mathbf{k}\cdot\boldsymbol{\Omega}(\mathbf{J})-\mathbf{k}'\cdot\boldsymbol{\Omega}(\mathbf{J}'))$$

Fluctuations create a wake

$$\delta\Phi_{\rm bare} o rac{\delta\Phi_{
m dressed}}{|E(\omega)|}$$

Interactions between wakes

$$\mathbf{D}_{\text{diff}}(\mathbf{J}) \to \frac{\mathbf{D}_{\text{diff}}(\mathbf{J})}{|E(\omega)|^2}$$

Collisions are resonant, long-range, correlated, and dressed

Non-local resonances

$$\delta_{\! D}(k\cdot\Omega(J)-k'\cdot\Omega(J'))$$

Non-local resonant couplings between dressed wakes

Anisotropic diffusion

Generic diffusion equation

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}} \mathbf{k} \left(\mathbf{D}_{\mathbf{k}}(\mathbf{J}) \cdot \frac{\partial F}{\partial \mathbf{J}} + \dots \right) \right]$$

Two sources of **anisotropies**

Plasmas

Galaxies

Orbital coordinates

$$(\mathbf{x}, \mathbf{v})$$

$$(\boldsymbol{\theta}, \mathbf{J})$$

Basis decomposition

$$U(\mathbf{x}, \mathbf{x}') \propto \int \frac{d\mathbf{k}}{\mathbf{k}^2} e^{i\mathbf{k}\cdot(\mathbf{x}-\mathbf{x}')}$$

$$U(\mathbf{w}, \mathbf{w}') = -\sum_{p} \psi^{(p)}(\mathbf{w}) \psi^{(p)*}(\mathbf{w}')$$

Dielectric function

$$1 + \frac{1}{\mathbf{k}^2} \int d\mathbf{v} \frac{\mathbf{k} \cdot \partial F / \partial \mathbf{v}}{\omega - \mathbf{k} \cdot \mathbf{v}}$$

$$\delta_{pq} - \sum_{\mathbf{k}} \int d\mathbf{J} \frac{\mathbf{k} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})} \psi_{\mathbf{k}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{k}}^{(q)}(\mathbf{J})$$

Resonance condition

$$\delta_{\mathrm{D}}(\mathbf{k}\cdot(\mathbf{v}-\mathbf{v}'))$$

$$\delta_{\! D} \big(\mathbf{k} \cdot \boldsymbol{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \boldsymbol{\Omega}(\mathbf{J}') \big)$$

Does the Balescu-Lenard Eq. work?

Long-range interacting systems are ubiquitous

The diversity of long-range interacting systems

Small dimension

d = 1

Galactic Nuclei

Homogeneous

 (\mathbf{x}, \mathbf{v})

Plasmas

Hot

Dark matter halo

Non-degenerate

No global resonance

Discs

Large dimension

d = 2

Globular clusters

Inhomogeneous

 $(\boldsymbol{\theta}, \mathbf{J})$

Galaxies

Cold

Galactic discs

Degenerate

$$\forall \mathbf{J}, \, \mathbf{n} \cdot \mathbf{\Omega}(\mathbf{J}) = 0$$

Keplerian systems

Balescu-Lenard: A numerical nightmare

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = -\frac{\partial}{\partial \mathbf{J}} \cdot \mathbf{F}(\mathbf{J}, t)$$

Balescu-Lenard equation

$$\mathbf{F}(\mathbf{J}, t) = \sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \, \delta_{\mathbf{D}}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}')) \, |\psi_{\mathbf{k}\mathbf{k}'}^{\mathbf{d}}|^{2}$$

$$\times \left(\mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} - \mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} \right) F(\mathbf{J}) F(\mathbf{J}')$$

Diffusion flux

$$\psi^{\mathbf{d}}(\mathbf{J}, \mathbf{J}', \omega) = -\sum_{p,q} \psi_{\mathbf{k}}^{(p)}(\mathbf{J}) \mathbf{E}_{pq}^{-1}(\omega) \psi_{\mathbf{k}'}^{(q)*}(\mathbf{J}')$$

Dressed susceptibility coefficients

$$\mathbf{E}_{pq}(\omega) = \delta_{pq} - \mathbf{M}_{pq}(\omega)$$

Dielectric matrix

$$\mathbf{M}_{pq}(\omega) = \sum_{\mathbf{k}} \int d\mathbf{J} \frac{\mathbf{k} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})} \psi_{\mathbf{k}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{k}}^{(q)}(\mathbf{J}) \leftarrow \psi_{\mathbf{k}}^{(p)}(\mathbf{J}) = \int \frac{d\boldsymbol{\theta}}{(2\pi)^d} \psi^{(p)}(\mathbf{x}[\boldsymbol{\theta}, \mathbf{J}]) e^{-i\mathbf{k}\cdot\boldsymbol{\theta}}$$

Response matrix

Basis elements

With also:

- + Integral over $d\theta$
- + (Double) integral over $d\mathbf{J}$
- + (Triple) sum over \mathbf{k}
- + (Double) sum over (p,q)
- + Matrix inversion
- + Resonant denominator
- + Resonance condition

A numerical nightmare

$$\mathbf{F}(\mathbf{J}, t) = \sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \left[\frac{\delta_{\mathbf{D}}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}'))}{\delta_{\mathbf{D}}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}'))} \right] \psi_{\mathbf{k}\mathbf{k}'}^{\mathbf{d}} |^{2}$$

$$\times \left(\mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} - \mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} \right) F(\mathbf{J}) F(\mathbf{J}')$$

Diffusion flux

$$\psi^{\mathbf{d}}(\mathbf{J}, \mathbf{J}', \omega) = -\sum_{p,q} \psi_{\mathbf{k}}^{(p)}(\mathbf{J}) \mathbf{E}_{pq}^{-1}(\omega) \underline{\psi_{\mathbf{k}'}^{(q)*}(\mathbf{J}')}$$

Dressed susceptibility coefficients

$$\mathbf{E}_{pq}(\omega) = \delta_{pq} - \mathbf{M}_{pq}(\omega)$$

Dielectric matrix

$$\mathbf{M}_{pq}(\omega) = \sum_{\mathbf{k}} \int d\mathbf{J} \frac{\mathbf{k} \cdot \partial F / \partial \mathbf{J}}{\omega - \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J})} \psi_{\mathbf{k}}^{(p)*}(\mathbf{J}) \psi_{\mathbf{k}}^{(q)}(\mathbf{J}) \leftarrow \psi_{\mathbf{k}}^{(p)}(\mathbf{J}) = \int \frac{d\boldsymbol{\theta}}{(2\pi)^d} \psi^{(p)}(\mathbf{x}[\boldsymbol{\theta}, \mathbf{J}]) e^{-i\mathbf{k} \cdot \boldsymbol{\theta}}$$

Response matrix

Basis elements

Galactic nuclei

$$U(\mathbf{w}, \mathbf{w}') \mapsto \overline{U} = \int \frac{\mathrm{d}\theta}{2\pi} \frac{\mathrm{d}\theta'}{2\pi} U$$

Orbit-averaged interactions

Galactic discs

Inhomogeneous system and intricate orbits

Sub-structures in **action space**, as observed by GAIA

How do stars diffuse in **galactic discs**?

- + Galactic archeology
- + Formation of spiral arms/bars
- + Local velocity anisotropies
- + Disc thickening
- + Stellar **streams**

Swing amplification in cold discs

Toomre, 1981

Collective effects essential

An example of secular evolution

Sellwood 2012's numerical experiment

- + Stationary **stable** Mestel disc
- + Sampled with **500M particles**
- + Unavoidable transient waves

Initial stable/stationary DF

In configuration space

Some remarks

+ Nothing spectacular happens

Linearly stable

+ Cannot track disc's heating

Inhomogeneous

+ Large transients

Self-gravitating

+ Fluctuations are absorbed

Resonant

In action space

Some remarks

+ **Heating** in orbital space

Inhomogeneous

+ Fast heating

$$T_{\text{ridge}} \simeq |E|^2 N T_{\text{dyn}}$$

Self-gravitating

+ Localised heating

Resonant

A dynamics sourced by finite-N effects

The larger the number of particles, the slower the effect

Needed ingredients

Needed ingredients for that dynamics

+ Disc is frozen on dynamical times

Linearly stable

+ Disc is isolated

No external perturbations

+ Disc has internal fluctuations

Internal Poisson noise

+ Fluctuations are large

Self-gravitating

+ Heating happens in orbital space

Inhomogeneous

+ Heating is **localised**

Resonant

Balescu-Lenard equation

The master equation for self-induced orbital relaxation

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{1}{N} \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{D}(\mathbf{k} \cdot \Omega(\mathbf{J}) - \mathbf{k}' \cdot \Omega(\mathbf{J}'))}{|E_{\mathbf{k}\mathbf{k}'}(\mathbf{J}, \mathbf{J}', \mathbf{k} \cdot \Omega(\mathbf{J}))|^{2}} \times \left(\mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} - \mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} \right) F(\mathbf{J}, t) F(\mathbf{J}', t) \right]$$

Some properties

 $F(\mathbf{J},t)$ Orbital distorsion in action space

1/N Sourced by finite-N effects

 $\partial/\partial \mathbf{J}$. Divergence of a **diffusion flux**

(k, k') Discrete resonances

 $\int dJ'$ Scan of **orbital space**

 $\delta_{D}(\mathbf{k}\cdot\Omega(\mathbf{J})-\mathbf{k}'\cdot\Omega(\mathbf{J}'))$ Resonance cond.

 $1/|E_{\mathbf{k}\mathbf{k}'}(\mathbf{J},\mathbf{J}',\omega)|^2$ Dressed couplings

Prediction for the diffusion

Diffusion flux in action space

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = -\frac{\partial}{\partial \mathbf{J}} \cdot \mathbf{F}(\mathbf{J}, t)$$

Spontaneous formation of anisotropic sub-structures in action space

Balescu-Lenard

Prediction for the diffusion

Diffusion flux in action space

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = -\frac{\partial}{\partial \mathbf{J}} \cdot \mathbf{F}(\mathbf{J}, t)$$

Spontaneous formation of anisotropic sub-structures in action space

Kinetic theory can predict localised anisotropic heatings

300

100

200

400

What happens after the ridge formation?

When the ridge gets large enough $N=8.10^5$ t = 60 $||E(\omega)||$ **Linear instability** Balescu-Lenard → Vlasov $N^{1/2}\Sigma_2(t,N)$ N Initial times 1.5 8×10^{5} $N=8.10^{5}$ t = 2400**Collisionless Evolution** -12×10^5 Vlasov -16×10^5 -24×10^5 -32×10^5 **Collisional Evolution** 0.5Balescu-Lenard 48×10^{5} 64×10^5 Late times

2-body **resonant** relaxation creates **small-scale structures** in the DF

500

The fate of secular evolution

Galactic centres

S-Cluster of **SgrA***

Densest stellar system of the galaxy Dynamics dominated by the **central black hole** What is the diet of a **supermassive black hole**?

Stellar diffusion in galactic centres

- + **Origin and structure** of SgrA*
- + Relaxation in **eccentricity**, **orientation**

Sources of gravitational waves

- + BHs-binary mergers
- + TDE, EMRIs

Extreme Mass Ratio Inspiral

What is the long-term dynamics of stars in these very dense systems?

Galactic centres are extremely dense

VLT observations

N-body simulations (B. Bar-Or)

Perfect "lab" to investigate the **statistical physics** of a stellar system

Galactic centers are degenerate

Potential dominated by the SMBH:

+ Keplerian orbits are **closed**

$$\varepsilon = M_{\star}/M_{\bullet} \ll 1$$

Dynamical degeneracy:
$$\forall \mathbf{J} \ , \ \mathbf{n} \cdot \mathbf{\Omega}_{\mathrm{Kep}}(\mathbf{J}) = 0$$

KECK observations

N-body simulations (B. Bar-Or)

Orbit-average: stars are replaced by Keplerian wires

Keplerian orbits

The BH dominates the dynamics

VLT observations

Typical orbit

Keplerian systems

Solar System

Galactic Centre

Planets

Sun

 $N \simeq 10$

Planar symmetry

Quasi-circular orbits

Light object

Heavy objects

Number of "particles"

Shape of the system

Shape of the orbits

Stars

Black hole

 $N \simeq 10^6$

Spherical symmetry

Eccentric orbits

Keplerian orbits

How to describe an **orbit**

Dynamical motion

Phase of the orbit

Shape of the orbit

Orientation of the orbit

Spatial orientation

Keplerian orbit

Wires dynamics

Orbit Average

$$J_{\mathrm{fast}} = I(a)$$
 adiabatically conserved

Wires may **precess constructively**:

+ In-plane precessions

- Spherical cluster mass
- 1PN relativistic **Schwarzschild precession**

$$\dot{\omega} = \Omega_{\text{prec}}$$
; $\hat{\mathbf{L}} = \text{cst}$.

+ Out-of-plane precessions

- Triaxial cluster mass
- 1.5PN relativistic **Lense-Thirring precession**

$$\dot{\hat{\mathbf{L}}} = \mathbf{\Omega}_{\text{prec}}$$
 ; $L = \text{cst}$.

Wires may also jitter stochastically

- Finite-N effects
$$\hat{\mathbf{L}} = \boldsymbol{n}(t)$$

$$\dot{\hat{\mathbf{L}}} = \boldsymbol{\eta}(t)$$

Long-term dynamics of wires

In-plane precessions (L, ω)

Constructive mean field motion

$$\Omega^{\text{prec}} = \Omega^{\text{prec}}_{\text{self}} + \Omega^{\text{prec}}_{\text{rel}} + \Omega^{\text{prec}}_{\text{ext}}$$

Long-term diffusion of L = L(e)

Scalar Resonant Relaxation

No mean field motion

$$\langle \Omega^{\rm prec} \rangle = 0$$

Random walk on the sphere of L

Vector Resonant Relaxation

Stellar dynamics

Stars

Ellipses

Annuli

~10 years

Orbital motion

~30,000 years

Pericentre precession

~1,000,000 years

Orientation precession

SgrA* is 10,000,000,000 years old, we can wait longer...

Deflections

What happens along the **stellar orbit**?

Typical timescale ~1,000,000,000 years

1. Dynamical timeFast orbital motion induced by the BH

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$$

1. Dynamical timeFast orbital motion induced by the BH

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$$

2. Precession time

In-plane precession (mass + relativity)

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = \Omega_{\mathrm{prec}}$$

1. Dynamical timeFast orbital motion induced by the BH

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$$

2. Precession time

In-plane precession (mass + relativity)

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = \Omega_{\mathrm{prec}}$$

3. Vector Resonant Relaxation

Non-spherical torque coupling

$$\frac{\mathrm{d}\hat{\mathbf{L}}}{\mathrm{d}t} = \eta(\hat{\mathbf{L}}, t)$$

1. Dynamical timeFast orbital motion induced by the BH

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$$

2. Precession time

In-plane precession (mass + relativity)

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = \Omega_{\mathrm{prec}}$$

3. Vector Resonant Relaxation

Non-spherical torque coupling

$$\frac{\mathrm{d}\hat{\mathbf{L}}}{\mathrm{d}t} = \eta(\hat{\mathbf{L}}, t)$$

4. Scalar Resonant Relaxation

Resonant coupling on precessions

$$\frac{\mathrm{d}\left|\mathbf{L}\right|}{\mathrm{d}t} = \eta(\left|\mathbf{L}\right|, t)$$

1. Dynamical timeFast orbital motion induced by the BH

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$$

2. Precession time

In-plane precession (mass + relativity)

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = \Omega_{\mathrm{prec}}$$

3. Vector Resonant Relaxation

Non-spherical torque coupling

$$\frac{\mathrm{d}\hat{\mathbf{L}}}{\mathrm{d}t} = \eta(\hat{\mathbf{L}}, t)$$

4. Scalar Resonant Relaxation

Resonant coupling on precessions

$$\frac{\mathrm{d} |\mathbf{L}|}{\mathrm{d}t} = \eta(|\mathbf{L}|, t)$$

5. Non-Resonant Relaxation

Local two-body encounters

$$\frac{\mathrm{d}a}{\mathrm{d}t} = \eta(a, t)$$

Timescales are highly hierarchical

1. Dynamical timeFast orbital motion induced by the BH

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$$

2. Precession time

In-plane precession (mass + relativity)

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = \Omega_{\mathrm{prec}}$$

3. Vector Resonant Relaxation

Non-spherical torque coupling

$$\frac{\mathrm{d}\hat{\mathbf{L}}}{\mathrm{d}t} = \eta(\hat{\mathbf{L}}, t)$$

4. Scalar Resonant Relaxation

Resonant coupling on precessions

$$\frac{\mathrm{d}|\mathbf{L}|}{\mathrm{d}t} = \eta(|\mathbf{L}|, t)$$

Non-Resonant Relaxation

Local two-body encounters

$$\frac{\mathrm{d}a}{\mathrm{d}t} = \eta(a, t)$$

Non-local resonances

The (degenerate) Balescu-Lenard equation

The master equation of scalar resonant relaxation

$$\frac{\partial F(L, a, t)}{\partial t} = \frac{1}{2} \frac{\partial}{\partial L} \left[L D_{LL}(L, a) \frac{\partial}{\partial L} \frac{F(L, a, t)}{L} \right]$$

Anisotropic diffusion coefficients

$$D_{LL}(L,a) \propto rac{1}{N_{\star}} \sum_{n,n'} n^2 \int \!\! \mathrm{d}L' \mathrm{d}a' \, \delta_{\mathrm{D}}(n\Omega^{\mathrm{prec}}(L,a) - n'\Omega^{\mathrm{prec}}(L',a')) \ imes \left| A_{nn'}(L,a,L',a')
ight|^2 F^{\mathrm{Cluster}}(L',a',t)$$

Some properties

$$F(L,a,t)$$
 Orbital distortion $\partial/\partial L$ Adiabatic invariance $D_{LL}(L,a)$ Anisotropic diffusion $1/N_{\star}$ Finite-N effects

n Resonance numbers $\int\!\!\mathrm{d}L'\mathrm{d}a' \quad \text{Scan of orbital space}$ $\delta_{\mathrm{D}}(n\Omega^{\mathrm{prec}}-n'\Omega^{\mathrm{prec}\,\prime}) \quad \text{Resonance condition}$ $\left|A_{nn'}(L,a,L',a')\right|^2 \quad \text{Coupling coefficients}$

Timescales are highly hierarchical

1. Dynamical timeFast orbital motion induced by the BH

$$\frac{\mathrm{d}M}{\mathrm{d}t} = \Omega_{\mathrm{Kep}}$$

2. Precession time

In-plane precession (mass + relativity)

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = \Omega_{\mathrm{prec}}$$

3. Vector Resonant Relaxation

Non-spherical torque coupling

$$\frac{\mathrm{d}\hat{\mathbf{L}}}{\mathrm{d}t} = \eta(\hat{\mathbf{L}}, t)$$

Resonant coupling on precessions

$$\frac{\mathrm{d} |\mathbf{L}|}{\mathrm{d}t} = \eta(|\mathbf{L}|, t)$$

5. Non-Resonant Relaxation

Local two-body encounters

$$\frac{\mathrm{d}a}{\mathrm{d}t} = \eta(a, t)$$

Orbital orientations

Two timescales:

Precession ≪

Orientation

Orbital orientations

After one full precession, ellipses become annuli.

Orbital orientations

The orbital orientation simply becomes a point on the unit sphere.

Random walk of the stars' orientations

Pairwise coupling between two annuli

+ Long-range Hamiltonian system

$$H = \sum_{i < j} A(a_i, e_i, a_j, e_j) U(\hat{\mathbf{L}}_i \cdot \hat{\mathbf{L}}_j)$$

+ Dynamical variables - orientations:

- + Some properties
 - No kinetic energy
 - Vanishing **mean field**

$$\langle H \rangle = 0$$

- Additional "labels"

- Rotational invariance

$$\hat{\mathbf{L}}_i \cdot \hat{\mathbf{L}}_j$$

- + Motion coherent on large scales
 - Long-range interacting system
- + Motion smooth on short times
 - Time-correlated noise
- + Particles have "preferred friends"
 - Parametric coupling (a, e)
- + System in statistical equilibrium
 - Time stationarity (t t')
 - Rotation invariance $(\hat{\mathbf{L}}\cdot\hat{\mathbf{L}}')$

- + Motion coherent on large scales
 - Long-range interacting system
- + Motion smooth on short times
 - Time-correlated noise
- + Particles have "preferred friends"
 - Parametric coupling (a, e)
- + System in statistical equilibrium
 - Time stationarity (t t')
 - Rotation invariance $(\hat{L}\cdot\hat{L}')$

Typical evolution of an orientation

Typical timescale ~1,000,000 yr

The orbital orientation follows a correlated random walk.

+ How "**neighbors**" get separated

$$\frac{\mathrm{d}\hat{\mathbf{L}}_i}{\mathrm{d}t} = \eta(\hat{\mathbf{L}}_i, t)$$

+ Evolution sourced by a **shared**, **spatially-extended** and **time-correlated** noise

$$\left\langle \eta(a_i, \hat{\mathbf{L}}_i, t) \, \eta(a_j, \hat{\mathbf{L}}_j, t') \right\rangle$$

$$= C(a_i, a_j, \hat{\mathbf{L}}_i \cdot \hat{\mathbf{L}}_j, t - t')$$

- + Two joint sources of **separation**
 - Parametric separation

$$a_i \neq a_j$$

- Angular separation

$$\hat{\mathbf{L}}_i \neq \hat{\mathbf{L}}_j$$

Resonant Relaxation in Galactic nuclei

Kinetic theory can predict long-term relaxations.

Resonances

$$k,k'\to +\infty$$

$$\Omega(\mathbf{J}) = \mathrm{cst}$$

Kinetic blockings

$$d = 1$$
 and $\frac{1}{N^2}$

Deviations

$$\frac{\partial F_{\rm d}}{\partial t}$$
 vs $\frac{\partial \langle F_{\rm d} \rangle}{\partial t}$

Integrability

$$\Phi(\mathbf{x},t) \neq \Phi(\mathbf{J},t)$$

Resonances

$$\mathbf{k}, \mathbf{k}' \to + \infty$$

$$\Omega(\mathbf{J}) = \mathbf{cst}$$

Kinetic blockings

$$d=1$$
 and $\frac{1}{N^2}$

Deviations

$$\frac{\partial F_{\rm d}}{\partial t}$$
 vs $\frac{\partial \langle F_{\rm d} \rangle}{\partial t}$

Integrability

$$\Phi(\mathbf{x},t) \neq \Phi(\mathbf{J},t)$$

(Non)-resonant relaxation

What about high-order resonances?

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = -\frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}'} \left(\dots \right) \right]$$

Resonant Relaxation

$$|\mathbf{k}|, |\mathbf{k}'| \simeq 1$$

Non-Resonant Relaxation

Where is the **Coulomb logarithm**?

$$\ln \Lambda = \ln(k_{\min}/k_{\max})$$

Fundamental degeneracies

Dynamics in degenerate frequency profiles

$$\delta_{\mathrm{D}}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}'))$$

Resonance condition

$$\forall \mathbf{J}, \ \mathbf{\Omega}(\mathbf{J}) = 0$$

$$\forall \mathbf{J}, \ \mathbf{\Omega}(\mathbf{J}) = \mathbf{\Omega}_0$$

$$\psi = -\int \frac{\mathrm{d}\theta \, \mathrm{d}\theta'}{|\mathbf{x} - \mathbf{x}'|}$$

Harmonic potential

How does relaxation occur in **degenerate systems**?

Resonances

$$\mathbf{k}, \mathbf{k}' \rightarrow + \infty$$

$$\Omega(\mathbf{J}) = \mathrm{cst}$$

Kinetic blockings

$$d=1$$
 and $\frac{1}{N^2}$

Deviations

$$\frac{\partial F_{\mathrm{d}}}{\partial t}$$
 vs $\frac{\partial \langle F_{\mathrm{d}} \rangle}{\partial t}$

Integrability

$$\Phi(\mathbf{x},t) \neq \Phi(\mathbf{J},t)$$

Kinetic blockings

Generic Balescu-Lenard equation

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{1}{N} \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{D}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}'))}{\|E_{\mathbf{k}\mathbf{k}'}(\mathbf{J}, \mathbf{J}', \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}))\|^{2}} \times \left(\mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} - \mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} \right) F(\mathbf{J}, t) F(\mathbf{J}', t) \right]$$

What happens in **1D systems**?

$$\begin{cases} \mathbf{k} = \mathbf{k}' = k \\ \mathbf{J} = \mathbf{J}' = J \end{cases}$$

$$\begin{cases} v_1 + v_2 = \text{cst} \\ v_1^2 + v_2^2 = \text{cst} \end{cases}$$

No relaxation!

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{1}{N} \times 0$$

Kinetic theory at order $1/N^2$

 $1/N^2$ kinetic equation

Without collective effects | Without inhomogeneity

$$\frac{\partial F(v)}{\partial t} = \frac{1}{N^2} \frac{\partial}{\partial v} \left[\sum_{k_1, k_2} U(k_1, k_2) \mathcal{P} \int \frac{dv_1}{(v - v_1)^4} \right]$$

$$\times \int dv_2 \, \delta_D \left[(k_1 + k_2) \, v - k_1 \, v_1 - k_2 \, v_2 \right]$$

$$\times \left((k_1 + k_2) \frac{\partial}{\partial v} - k_1 \frac{\partial}{\partial v_1} - k_2 \frac{\partial}{\partial v_2} \right) F(v) F(v_1) F(v_2)$$

- + How do collective effects contribute?
- + How do frequency profiles contribute?
- + What is the structure of kinetic theories at **higher order** $1/N^s$?

Resonances

$$\mathbf{k}, \mathbf{k}' \rightarrow + \infty$$

$$\Omega(\mathbf{J}) = \mathrm{cst}$$

Deviations

$$\frac{\partial F_{\rm d}}{\partial t}$$
 vs $\frac{\partial \langle F_{\rm d} \rangle}{\partial t}$

Kinetic blockings

$$d = 1$$
 and $\frac{1}{N^2}$

Integrability

$$\Phi(\mathbf{x},t) \neq \Phi(\mathbf{J},t)$$

Faking the dynamics

Kinetic theory predicts the ensemble average dynamics

One realisation vs. mean kinetic prediction

Faking the dynamics

What is the statistics of (large) deviations?

Probability of a given realisation?

$$\mathbb{P}\big(\overline{F_{\mathrm{d}}(t)} = \overline{F_{\mathrm{0}}(t)}\big)$$

Most likely realisation?

$$\mathbb{P}\left(\overline{F_{\mathrm{d}}(t)} = \langle \overline{F_{\mathrm{d}}(t)} \rangle\right)$$

Can one **fake** realisations?

$$\frac{\partial F_{\rm d}}{\partial t} = \mathrm{BL}[F_{\rm d}(t)] + \eta[F_{\rm d}(t)] \quad \text{with the noise } \left\langle \eta[F_{\rm d}] \, \eta[F_{\rm d}] \right\rangle = ??$$

$$\langle \eta[F_{\rm d}] \eta[F_{\rm d}] \rangle = ??$$

Faking the dynamics

Independent random walks

$$\frac{\mathrm{d}\mathbf{J}}{\mathrm{d}t} = \eta(\mathbf{J}(t), t)$$

$$\frac{\mathrm{d}\Delta\mathbf{J}}{\mathrm{d}t} = \eta(\mathbf{J}_1(t), \mathbf{J}_2(t), t)$$

How do **nearby particles** separate?

Resonances $k,k'\to +\infty$ $\Omega(J)=\mathrm{cst}$

 $\Phi(\mathbf{x},t) \neq \Phi(\mathbf{J},t)$

Integrability

Going beyond isolated, integrable, resonant

Systems are not always isolated

$$\begin{cases} N = N(t) \\ \left[\delta H(t) \right]_{\text{tot}} = \left[\delta H(t) \right]_{\text{Poisson}} + \left[\delta H(t) \right]_{\text{ext}} \end{cases}$$

Structure formation
Open clusters
Collisionless relaxation

Systems are not always integrable

$$\left[\frac{\mathrm{d}\mathbf{J}}{\mathrm{d}t} \right]_{\mathrm{tot}} = \left[\frac{\mathrm{d}\mathbf{J}}{\mathrm{d}t} \right]_{\mathrm{resonant}} + \left[\frac{\mathrm{d}\mathbf{J}}{\mathrm{d}t} \right]_{\mathrm{chaotic}}$$

Thickened discs
Barred galaxies
Flattened halos

Systems are not always "nicely" resonant

$$\Omega(\mathbf{J}) = (\Omega_1(\mathbf{J}), \epsilon \Omega_2(\mathbf{J}))$$

Mean-motion resonances
Eviction resonances
Precession resonances

Conclusion

Kinetic theory of self-gravitating systems

Long-range interacting systems are ubiquitous

Master equation for dressed resonant relaxation

$$\frac{\partial F(\mathbf{J}, t)}{\partial t} = \frac{1}{N} \frac{\partial}{\partial \mathbf{J}} \cdot \left[\sum_{\mathbf{k}, \mathbf{k}'} \mathbf{k} \int d\mathbf{J}' \frac{\delta_{D}(\mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}) - \mathbf{k}' \cdot \mathbf{\Omega}(\mathbf{J}'))}{|E_{\mathbf{k}\mathbf{k}'}(\mathbf{J}, \mathbf{J}', \mathbf{k} \cdot \mathbf{\Omega}(\mathbf{J}))|^{2}} \right] \times \left(\mathbf{k} \cdot \frac{\partial}{\partial \mathbf{J}} - \mathbf{k}' \cdot \frac{\partial}{\partial \mathbf{J}'} \right) F(\mathbf{J}, t) F(\mathbf{J}', t)$$