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Kinetic theory of self-gravitating systems

Long-term relaxation

How do systems diffuse?

Local Homogeneous Inhomogeneous
Brownian diffusion Plasma diffusion Galaxy diffusion
Fluctuation-Dissipation Theorem Same process occur in galaxies, but:

Gravity is long-range
; Noise + Stars follow orbits and resonate
+ Galaxies amplify perturbations

A A

Diffusion

How do galaxies evolve on cosmic timescales?
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Relaxation and Dynamics

How do stars evolve?

Ink in water Stars in galaxies
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Diffusion

How do systems diffuse?

Ink in water Stars in a galaxy

= ,

Local interaction Long-range interaction
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Diffusion

How do systems diffuse?

Ink in water Stars in a galaxy

W

Pairwise interaction Collective interaction
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Diffusion
How do systems diffuse?
Ink in water Stars in a galaxy
Random
walk Orbit

Stochastic trajectory Regular trajectory
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The gravitational Balescu-Lenard equation

What does it require?

Where does it come from?

What is it?

Does it work?

What's next?
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What does
the Balescu-Lenard Eg.

require?
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Galactic evolution on cosmic timescales

External
erturbations
Other P
population
(e.g., GMCs)
— [ ]
Gravitational /. \ —l
wake —
Test
star ./ ?
./ Field
stars
Quasi-periodic
motion
Galaxies are:
+ Inhomogeneous (complex trajectories) Angle-action coordinates
+ Relaxed (equilibrium states) Quasi-stationary states
+ Resonant (orbital frequencies) Fast timescale vs. cosmic timescale
+ Degenerate (in some regions) 1 Frequency commensurability
+ Self-gravitating (amplification of perturbations) | Linear response theory
+ Discrete (finite-N effects) T
. Nature vs. Nurture
+ Perturbed (effects of the environment) 1
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What does it require?

Inhomogeneous Relaxed Resonant

(X, V)
J F=FQJ,1) Q(J) = 0H,/0)
0,J)

Angle-Action coordinates Quasi-stationary states Fast/Slow timescale

Self-gravitating Discrete & Perturbed

1 1

| E(w) | N

Linear response theory Finite-N effects

10
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What does it require?

Inhomogeneous Relaxed Resonant

(X, V)
J F=FQJ,1) Q(J) = 0H,/0)
0,J)

Angle-Action coordinates Quasi-stationary states Fast/Slow timescale

1
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Inhomogeneous systems

+ Label orbits with integrals of motion

X J
- :
9 :
) I
(O |
< .
x— |
—— 0
Pendulum 0 Angle
+ Angle-Action coordinates + Frequencies’ commensurablllty n- ﬂ J =0
02
0(t) = 6y +t2(J) on 2”/
J(t) = cst.
Trajectories become
straight lines
+ Relaxation
¢ OO > 01 OO 6’1
(few) tcross> F = F(J,t) Non-Resonant “" Resonant

12
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Example: Orbits in a disc

0(t) =0 Q(J
Integrable orbits CI)O = CI)O(R, 27) { (t) 0 +1€2(J)

Radial oscillations Vertical oscillations
Vr ¥e

O a R z

Actions J = (]¢,J J) Frequencies €2 = (Q¢, Q. QZ)

r>*z

13
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What does it require?

Self-gravitating Discrete & Perturbed

1
| E(®)|

Linear response theory Finite-N effects
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Collective effects

Self-gravitating amplification

Collective effects

5pext Klimontovich ST Secular Evolution

1 ,
ol |/*

self

(or linear instability)

5q)self(— ) 0
Poisson

Gravitational polarisation essential to
+ Cause dynamical instabilities

+ Induce dynamical friction and mass segregation

+ Accelerate/Slow down secular evolution

15
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Collective effects

Self-gravitating amplification

Collective effects
Spext Klimontovich Secular Evolution
(or linear instability) /
| E (a)
(I)sel self
Poisson

Gravitational polarisation essential to
+ Cause dynamical instabilities

+ Induce dynamical friction and mass segregation

+ Accelerate/Slow down secular evolution

16
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Typical fate of a self-gravitating system

External
FP

Phase mixing

Perturbations Linear
/\ instability

Initial Relaxation Quasi-stationary Secular evolution
conditions ~ T dyn states Tsec > Tayn
Equilibrium
Violent relaxation
Self-gravity

Balescu-Lenard
Equation

17



Kinetic theory of self-gravitating systems

Where does

the Balescu-Lenard Eg.
come from?

18
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Balescu-Lenard via Klimontovich

Describing one realisation in phase space W = (X, V)

N 3D gravitationalzsystems
Discrete DF Fyw,0) = ) m3p(w — w0) Ve = 5~
i=1 U=
Discrete Hamiltonian Hd(W, 1) = Uext(w)+JdW, Fd(W,a ) U(w,w')
Continuity equation in phase space
_®
oF, 0 | o
of 0w -
®>
Exact Klimontovich equation e
at | [F ds Hd] — O Fy(w)

Phase space 19
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Solving Klimontovich
Perturbative expansion

Fy=Fy+8F with (6F) =0, >
& >
Hy=H,+6® with (6®) =0. >
—>
Mean-field equilibrium o s
Hy,=HyJ,1). 0 Fy©0,J)

. 1. . . Angle-Action space
Quasi-linear evolution equations

0O0F Timescale separation

ot [5F ’ HO] [F 0 5(1)] =0 {T(SF ~ Tdyn

9Fy I, =~ <\/N)2 X Tsp
ot

— — ([or.50])

20
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Dynamics of fluctuations

Fast evolution of perturbations (Linearised Klimontovich Eq.)

0oF |
A 6F, Hy| + |Fp, 6®] = 0
: : ] : ]
_5F, HO_ Mean-tield motion .
:FO’ 5(13: Collective effects
Self-consistent amplification ¢ 0 o
5® = 5P [SF] t o
Timescale separation &Q &
Fo(J) = CSt — : y > s 0
HO(J) _ Cst 0 27 0 27

Phase Mixing

21
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Solving for the fluctuations
Linear amplification

Sl ) — oF(J,0) K - 0F,/0]) 5, (J. )
KD -k QU) wo-k Q) Kn?
Bare noise Self-consistent amplification

with the self-consistency

oDP(w, 1) = | dw' ol (W', t) U(w, w’)

Generic form of a Fredholm equation

o] =60 + Jd J M(1.J) [s0(3)]

dressed

Amplification kernel

_ [ 0D ()] 4re [0D ()] 4re

dressed 1 — M(w)  [E)]

Dressing of perturbations

60 (w)|

22
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Basis method (l//(p)(w), p(p)(w))

Yfm
for 3D systems

~x*x¢

yPI(w) = de’ U(w, w) pP(W"),

de l//(p)(w) p(q)*(w) — _ 5pq.

“Separable” pairwise interaction

Uw, W) == ) yP(w)y"(w)

P
Plasmas Galaxies
U(X9 X,) — ‘ X X/ |
AD = 4rGp
dk ik-x ,—1k-x’
i C c Poisson equation
2
K|

23
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[5H (a))]bare
| E(w) |

Linear response theory [5H (a’)] dressed

Kk-0F,/0 .
= 1- 2o Y @ = W )
Kk

w — K-Q(J )
Dielectric function Some properties
Z Sum over resonances

k
Two limits

dJ Scan over orbital space
’;’ 0 Cold regime .

o —Kk-Q)) Resonant int.

~ |1 Hotregime
l//(l?) — de’ Up(p) Long-range int.

24
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Dielectric function

Im|w]

1

| E(w) |

Linearly stable
system

Damped mode

Re [w]

Suscepti
1

bility

> 1

| E(€2,) |

Thermalisation

60(7)|

{frans.

~C

—Spt

25
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Dressed long-term diffusion

Secular evolution equation

OF,
—— = — ( |oF, 0D
)
Dressing comes twice
[5(1)] bare a}70 ‘ 5(1) ‘12)211‘6
dressed ‘ E(a)) | ot ‘ E(a)) ‘
Bare Poisson shot noise Relaxation time

1
| 0D ‘bare = W é Trelax = N Tdyn

Collective effects can drastically accelerate orbital heating,

in particular on large scales
26
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The two components of diffusion

Secular evolution equation

ﬂ=—([5F5c1>])= O ¥,
ot ’ 0J ’
Dynamics of perturbations
- oF(J,0) K-0F,/ 0] .
SF(J, 0) = — —— ——— 5, (J, »)
(w—k-QJ) o-k-QJ)
Poisson noise Potential fluctuations

Flux decomposition FUJ,n=F,J,»)+F,J,1)

Dynamical friction Diffusion
F,(J.1)  (SF(0) 50) Fod. o (00 60) Ny
=D,(J) Fo(J) =-D,(J)- a_JO

Backreaction to DF's perturbations Correlations of the potential tluctuations__
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What is
the Balescu-Lenard Eq.?

28
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Balescu-Lenard equation

The master equation for self-induced orbital relaxation

oFd.t) 19 [ZdeJ' opk - Q(J) —k'- Q(J"))
ot N o) | B (J, J, K - Q) |

X (k- 0 K’ 0 )F(J N EFJ, t)
aJ 0J’

Some properties

F(J,t) Orbital distorsion in action space JdJ/ Scan of orbital space

1/N  Sourced by finite-N effects
Sp(k-Q(J)—k’-Q(J’)) Resonance cond.

d/dJ - Divergence of a diffusion flux

/|| Ege(J, J', @) |2 Dressed couplings

(k, k) Discrete resonances

29
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Fokker-Planck equation
+ Test particle of mass m, — P(J,?)

+ Bath particles of mass m, = M, /N — Fy(J,?)

PAD _ 0 (3 | Spk - Q) — k' - QJ))

-2 ay 2
o 15T [Bed Yk -00)]

)
x (m k- mK' - P, FyJ', 1)

aJ aJ’
er - 0
Diffusion m k.- —
aJ
Vanishes in the collisionless limit N — 4+ oo Ddiff X <5(I)(l‘) 5(13(t')>
Sourced by correlations in the potential fluctuations
- 0
Friction mK’- Y
Dy,  (SP(t) 5D(1') )

Induces mass segregation

Sourced by the backreaction of the test particle on the bath 30
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Resonant encounters op(k - Q(J) —Kk’- Q"))

O
@

Collisions are resonant, long-range, correlated

31
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Dressed resonant encounters op(k - (J) —Kk"- Q(]J"))

P

Fluctuations create a wake

Interactions between wakes

Ddiff(J )
| E(w) |

Dgig(J) —

(2

Collisions are resonant, long-range, correlated, and dressed

32
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Non-local resonances
op(k - Q(J) — KkK’- Q(J))

e i N

N . ;
- \{> == Poisson fluctuation
= and its wake

av

Non-local resonant couplings between dressed wakes

33
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Anisotropic diffusion
Generic diffusion equation

oFJ,0) 9 OF
ot o) [Zk(Dk(J) o) )]

Two sources of anisotropies

J J J
A A A

> J; > J; > J;

oF 0 l)aF oF
ot 0] o) ot

— w5 = =2 kn@
) | 0J or ]

34



Kinetic theory of self-gravitating systems

Plasmas Galaxies
Orbital coordinates
(X, V) | ©0.J)
Basis decomposition
U(x,x) o [ S eletrn) Uw, W)= = 2y P (wyy(w)
) K >
Dielectric function
. " Kk -0F/0d])
1 k - oF/ov 5. — dJ (P) ) (@)
_ . (J)
1 + 12 d dv kv Pq ;u o—k- Q(J)

Resonance condition

S (k- (v = V")) Sp(k - QJ) —K - Q(J))

35
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Does
the Balescu-Lenard Eg.
work?

36
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Long-range interacting systems are ubiquitous

Homogeneous systems

1

x—x

W =

d=3, homogeneous

Hamiltonian Mean Field Model

) = —cos(6 — 6)

d=1, inhomogeneous

Vector Resonant Relaxation

Y=-V(ss)

d=1, inhomogeneous, degenerate

2D hydrodynamics

®

= —In(|x — x)

d=2, inhomogeneous

Self-gravitating discs

b= — 1

[x — x|

d=2, inhomogeneous

Scalar Resonant Relaxation
p_ [ 264

[x —x'|

d=2, inhomogeneous, degenerate

37
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The diversity of long-range interacting systems

Small dimension Large dimension
d=1 Galactic d="2 Globular
Nuclei clusters
Homogeneous Inhomogeneous
(Xa V) Plasmas (0, J) Galaxies
Hot Cold
1 1 et
~ ] Dark matter > ] Ga.ac’uc:
‘ E(w) ‘ halo ‘ E(w) ‘ discs
Non-degenerate Degenerate
No global resonance Discs V], n-QJ) =0 Keplerian
systems

38
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Balescu-Lenard: A numerical nightmare

/ . _ 1. / d 12
oF(J, 1) _ _i F( t);kkadJ 5D(k QJ)-k"-Q(J")) |wkk’|
ot 0J ’

—__k- i) FO)FJ')

Balescu-Lenard equation aJ' aJ

Diffusion flux

== 2 DE @y J) = 6,y — M (@)
p q . . 9.
Dressed susceptibility coefficients Dielectric matrix

k-o0F/0 . do
m Z [ w—Kk- QgJ) S W(Q)(J) J(zﬂ)d (p)( [0, J]) ~ie

Response matrix Basis elements

39
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With also: A numerical nightmare
+ Integral over d@

+ (Double) integral over dJ Z deJ,
kK’

+ (Triple) sum over Kk

+ (Double) sum over (p, q) —k- i) FJ) F(J')

2

+ Matrix inversion dJ’ 0]

+ Resonant denominator

Diffusion flux

V/d(J J,w) = Z (p)(J ) (a)) ](EQ) J’) — 5pq - g/lpq(a))
p q . . .
Dressed susceptibility coefficients Dielectric matrix

k - 0F/0 ) 40
k

Response matrix Basis elements

40
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Does it work?

Galactic discs Galactic nuclei

41
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Does it work?

Galactic discs Galactic nuclei
: > 1 Uw,w)—~U Jde “u
w,wW)— U=
| E(w) | 27 2m
Dynamically cold system Orbit-averaged interactions

42
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Does it work?

Galactic discs

1
| E(w)

Dynamically cold system

> 1

43
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J

I,

Galactic discs

Cat

= .
-

......

‘Tricl< et al., 2018

Sub-structures in action space,
as observed by GAIA

How do stars diffuse in galactic discs?
+ Galactic archeology
+ Formation of spiral arms/bars
+ Local velocity anisotropies
+ Disc thickening
+ Stellar streams

Swing amplification in cold discs

Toomre, 1981

~ 30 . .
Collective effects essential
E@)]
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An example of secular evolution

Sellwood 2012’s numerical experiment
+ Stationary stable Mestel disc

+ Sampled with 500M particles

+ Unavoidable transient waves

Initial stable/stationary DF

time 0

0.8

0.2

0.0

0.8

0.01

OOO : S T —

0.02

0 2 4 6 8 10

Evolved DF

t

ime 1400

2

) I ;
4 6 8 10

J¢ Sellwood (2012) 45
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In configuration space

Some remarks

+ Nothing spectacular happens

Linearly stable

+ Cannot track disc’s heating

Inhomogeneous

+ Large transients

Self-gravitating

+ Fluctuations are absorbed

Resonant

46
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In action space

Some remarks

+ Heating in orbital space

Inhomogeneous

+ Fast heating

Tridge = N Tdyn

Self-gravitating

+ Localised heating

Resonant
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A dynamics sourced by finite-N effects

Max

1074 ; l . 1

0 1000 2000 3000
Sellwood (2012)

Time

The larger the number of particles, the slower the eftect
48
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Needed ingredients

Needed ingredients for that dynamics .

+ Disc is frozen on dynamical times .. |

Linearly stable .

+ Disc is isolated

No external perturbations

0.2 r

+ Disc has internal fluctuations
Internal Poisson noise

+ Fluctuations are large
Self-gravitating

+ Heating happens in orbital space

Inhomogeneous Jr |

+ Heating is localised

0.2 N

Resonant

Initial stable/stationary DF

I time 0

Evolved DF

L time 1400

08

Sellwood (2012)

49
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Balescu-Lenard equation

The master equation for self-induced orbital relaxation

oFd.t) 19 [ZdeJ' opk - Q(J) —k'- Q(J"))
ot N o) | B (J, J, K - Q) |

X (k- 0 K’ 0 )F(J N EFJ, t)
aJ 0J’

Some properties

F(J,t) Orbital distorsion in action space JdJ/ Scan of orbital space

1/N  Sourced by finite-N effects
Sp(k-Q(J)—k’-Q(J’)) Resonance cond.

d/dJ - Divergence of a diffusion flux

/|| By (J, J', ©) || Dressed couplings

(k, k) Discrete resonances

50
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Prediction for the diffusion

Diffusion flux in action space

0

oF(J, t)

ot
Spontaneous formation of anisotropic sub-structures in action space
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Prediction for the diffusion
Diffusion flux in action space

oF(J, 1) 0
= -F(J, 1)
ot ol
Spontaneous formation of anisotropic sub-structures in action space
J, J
N Sellwood, 2012 ] _ ]
ILR resonance ] - ILR resonance
. Negative flux I ]
o g{ I \‘ Negative flux
oy Lo g, 2o | - . \ . . \ l
/4 Balescu-Lenard ‘4

Kinetic theory can predict localised anisotropic heatings .



Kinetic theory of self-gravitating systems

What happens after the ridge formation?
When the ridge gets large enough

=T
| E(w) |
Linear instability Balescu-Lenard —> Vlasov
N12%,(t,N)
iV 5 Initial times

1.5 _ o 8X1OO N=8.10"

Collisionless Evolution  19%10° 1=2400
Vlasov ~
L.+ — 16x10°
— 24x10°
Collisional Evolution - 32x10°

05
Balescu—l.enard 48107
64x10° :
; Late times

100 200 300 400 500

2-body resonant relaxation creates small-scale structures in the DF .,
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The fate of secular evolution

O o 1 = % ) ‘ "
I/ # Unstable:

Vlasov
'

‘ /
A Phase
A Lo

o W1 _ | P— t'.' vvv ' Transition
g , .u"‘V"vw . v"
© Celfisions] - BL
ffi" Inij:ial N . 5 O ',<
;":'_’ SWlng almp. oen
1078 N=500K -
\/LN Poisson | N _
shot noise
N=500OM
107 , , | . |
. 1000 2000 3000

Sellwood (2012) -
Time 54
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Does it work?

Galactic nuclei

dg do’
U
2w 2rx

Orbit-averaged interactions

Uw, W) U=J

55
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Galactic centres

2013.6 What is the diet of a supermassive black hole?

Stellar diffusion in galactic centres
+ Origin and structure of SgrA*
+ Relaxation in eccentricity, orientation

Sources of gravitational waves

+ BHs-binary mergers
+ TDE, EMRIs

Keck/UCLA Galactic
Center Group

S-Cluster of SgrA* _ R
Densest stellar system of the galaxy J. Guillonchon C. Sopuerta
Dynamics dominated by the central black hole

Tidal Disruption Event Extreme Mass Ratio Inspiral

What is the long-term dynamics of stars in these very dense systems?

56
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Galactic centres are extremely dense

VLT observations N-body simulations (8. Bar-Or)

Perfect “lab” to investigate the statistical physics of a stellar system
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Galactic centers are degenerate

Potential dominated by the SMBH:
+ Keplerian orbits are closed e =M,/M, <1

Dynamical degeneracy: VJ, n-Qke,(J) =0

Keck/UCLA Galactic
Center Group

KECK observations N-body simulations (8. Bar-Or)

Orbit-average: stars are replaced by Keplerian wires

58
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Keplerian orbits

The BH dominates the dynamics

o

Gillessen et al., 2009

VLT observations Typical orbit

59
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Keplerian systems

Solar System Galactic Centre

Light object
Planets I OpJeE Stars
Sun Heavy objects Black hole
Number of “particles” 6
N ~ 10 N ~ 10
Planar symmetry Shape of the system Spherical symmetry
Quasi-circular orbits Shape of the orbits Eccentric orbits

60
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Keplerian orbits

How to describe an orbit

Position of the star

Dynamical motion

Phase of the orbit

N

Pericentre phase

Shape of the orbit

D

& N

Semi-major axis

I

& N

Eccentricity

Orientation of the orbit

/)

Spatial orientation

Keplerian orbit
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Wires dynamics
Orbit Average

Jfast =] (CZ) adiabatically conserved

Wires may precess constructively:

+ In-plane precessions

- Spherical cluster mass

- 1PN relativistic Schwarzschild precession

@ =

A\

L. = cst.

prec
+ Out-of-plane precessions

- Triaxial cluster mass

- 1.5PN relativistic Lense-Thirring precession

°
A\

L=Q . L = cst.

prec

Wires may also jitter stochastically

% Q§§

- Finite-N effects t — I](I)
62
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Long-term dynamics of wires
In-plane precessions (L, ®)

Constructive mean field motion

()prec _ Qs;‘lefc 4 Qprec 4 Qprec

rel ext

Long-term diffusion of 'L = L(e)

Scalar Resonant Relaxation

A

Out-of-plane precessions L.

No mean field motion

<Qprec> — 0

A\

Random walk on the sphere of | L

Vector Resonant Relaxation

63
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Stellar dynamics

Stars Ellipses Annuli

~10 years ~30,000 years ~1,000,000 years

Orbital motion Pericentre precession  Orientation precession

SgrA* is 10,000,000,000 years old, we can wait longer...

64
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Deflections Typical timescale
What happens along the stellar orbit? ~1,000,000,000 years
L Zoom on the orbit
Local o
deflections 7>

Change
in velocity

Time

65
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Deflections Typical timescale

) ~1,000,000,000 years
The star has a lot of neighbours

Nearby stars ‘/>

Local
perturbations

Series of deflections

Velocity

Time
66

Random walk
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Deflections Typical timescale

) ~1,000,000,000 years
The star has a lot of neighbours

Nearby stars ‘/;.

Local
perturbations

Series of deflections

Velocity

Characterised by the homogeneous Landau equation Time
67
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Timescales are highly hierarchical

1. Dynamical time l
Fast orbital motion induced by the BH
dM O
. T °°K
dr P

68
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Timescales are highly hierarchical

1. Dynamical time l l
Fast orbital motion induced by the BH
dM O
. T °°K
dr P

2. Precession time
In-plane precession (mass + relativity)

69
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Timescales are highly hierarchical

1. Dynamical time l l
Fast orbital motion induced by the BH
dM O
. T °°K
dr P

2. Precession time
In-plane precession (mass + relativity)

3. Vector Resonant Relaxation
Non-spherical torque coupling

df’— (L, 1)
dr

70
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Timescales are highly hierarchical

1. Dynamical time
Fast orbital motion induced by the BH
dM O
ds — =“Kep
2. Precession time
In-plane precession (mass + relativity)
dw
— =0 rec
dt g 4
3. Vector Resonant Relaxation
Non-spherical torque coupling
dL (L, ?) \
_ = ;/] ,
dr
4. Scalar Resonant Relaxation
Resonant coupling on precessions
d|L|
=n(| L], 1)
dr

71
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Timescales are highly hierarchical

1. Dynamical time 1 2
Fast orbital motion induced by the BH
dM O
. "YK
dr P

2. Precession time
In-plane precession (mass + relativity)

3. Vector Resonant Relaxation
Non-spherical torque coupling
dL (L, ?) \
_ = ;/] ,
dr

4. Scalar Resonant Relaxation
Resonant coupling on precessions

d|L|
a R
5. Non-Resonant Relaxation — Q>
Local two-body encounters g
da @)
dr
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Kinetic theory of self-gravitating systems

Timescales are highly hierarchical

4. Scalar Resonant Relaxation
esonant coupling on precessions

LI
T ’




Kinetic theory of self-gravitating systems

Non-local resonances

Q Non-local resonances
between wires

S T

. IS
N ~ Fluctuations

Semi-major
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Kinetic theory of self-gravitating systems

The (degenerate) Balescu-Lenard equation

The master equation of scalar resonant relaxation

OF(L,a,t) 1 O

ot 20L

= ——{LDLL(L a)

0 F(L,a,t)
oL L

Anisotropic diffusion coefficients

’I’L’I’L

Drr(L,a) x — Z /dL da’ 6p (nQP™°(L,a) — n' QP (L', a"))

X |Apns (L, a, L, a’ )‘ plluster(p/ q/ t)

Some properties

F(L,a,t) Orbital distortion
0/0L Adiabatic invariance
Dy (L,a) Anisotropic diffusion

L/Ny| Finite-N effects

N Resonance numbers

/dL’da’ Scan of orbital space

/ / »
oD (nQpreC — n OQPFEC ) Resonance condition

|Ann/ (L,a,L’',a") |2 Coupling coefficients
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Kinetic theory of self-gravitating systems

Timescales are highly hierarchical

3. Vector Resonant Relaxation
on-spherical torque coupling

df’— (L, 1)
dr




Kinetic theory of self-gravitating systems

Orbital orientations

Orientation
~1,000,000 yr

Ny
Precession
~30,000 yr

Two timescales : Precession << Orientation
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Kinetic theory of self-gravitating systems

Orbital orientations

Typical timescale
Orientation ~1,000,000 yr

After one full precession, ellipses become annuli.
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Kinetic theory of self-gravitating systems

Orbital orientations

Typical timescale
Orientation ~1,000,000 yr

The orbital orientation simply becomes a point on the unit sphere.
79



Kinetic theory of self-gravitating systems

Vector Resonant Relaxation

Random walk of the stars’ orientations

+ Long-range Hamiltonian system
H — Z A(di, ei, aj, ej) U(Ll . L])
1<j

A\

+ Dynamical variables - orientations: [,

+ Some properties

- No kinetic energy

- Vanishing mean field <H> =0

- Additional “labels” (Cl, 8)

Pairwise coupling between two annuli - Rotational invariance Li . Lj
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Kinetic theory of self-gravitating systems

Vector Resonant Relaxation

+ Motion coherent on large scales
- Long-range interacting system
+ Motion smooth on short times
- Time-correlated noise
+ Particles have “preferred friends”
- Parametric coupling (a, ¢)
+ System in statistical equilibrium

- Time stationarity (# — ')

- Rotation invariance (L - L)




Kinetic theory of self-gravitating systems

Vector Resonant Relaxation

+ Motion coherent on large scales
- Long-range interacting system
+ Motion smooth on short times
- Time-correlated noise
+ Particles have “preferred friends”
- Parametric coupling (a, e)
+ System in statistical equilibrium
- Time stationarity (f — ')

- Rotation invariance (L - L)
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Kinetic theory of self-gravitating systems

Typical evolution of an orientation

Orientation = \
&

Typical timescale
~1,000,000 yr

The orbital orientation follows a correlated random walk.
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Kinetic theory of self-gravitating systems

Vector Resonant Relaxation

+ How "neighbors” get separated

+ Evolution sourced by a shared,
spatially-extended
and time-correlated noise

<’7(ai ; ti, Hn(a, IAJJ-, f’))

— C(al,d],Ll°Lj,l‘—l")

+ Two joint sources of separation

- Parametric separation
a; # a;
- Angular separation

L #L




Kinetic theory of self-gravitating systems

Resonant Relaxation in Galactic nuclei

Relaxation Relaxation
of eccentricities of orientations
D,(J) i " D,(J) o
| — Landau |
' — Balescu—L.enard '
| ® N-body :
| | )
I ® I
L | B |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | \
o/ . . \J

Kinetic theory can predict long-term relaxations.
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Kinetic theory of self-gravitating systems

What's next?
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Kinetic theory of self-gravitating systems

Resonances

K.k > + 0

Q(J) = cst

What's next?

Kinetic blockings

|
d=1 and —
N2

Deviations

oFy d (Fy)
—— VS

ot ot

Integrability

O(x, 1) # P, 1)
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Kinetic theory of self-gravitating systems

What's next?

Resonances

K.k > + 0

Q(J) = cst




Kinetic theory of self-gravitating systems

(Non)-resonant relaxation
What about high-order resonances?

oFJ.) 0
i H PAES)

k. Kk’
Resonant Relaxation Non-Resonant Relaxation
K|, K| ~1 k|, |K[>1
Long-range <@

resonances /

\ .

L ocal deflections

Where is the Coulomb logarithm? In A = In(k . ./k

min max)
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Kinetic theory of self-gravitating systems

Fundamental degeneracies
Dynamics in degenerate frequency profiles

5D(k y Q(J) -k’ Q(J/)) Resonance condition

V), QJ)=0 V], QJ) =

. d6 4o
w= U®L-L) . _J
| X —x'|

Vector Resonant Relaxation Harmonic potential

How does relaxation occur in degenerate systems?
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Kinetic theory of self-gravitating systems

What's next?

Kinetic blockings

d=1




Kinetic theory of self-gravitating systems

Kinetic blockings
Generic Balescu-Lenard equation

oFJ.,n) 10 [ZdeJ' opk - QJ) — K- Q(J))
ot N d] | Eq(J, T k- Q) |2

0 0
X (k- k' >F(J, N F(), t)]

oJ 0J’
What happens in 1D systems? No relaxation!
— 1 — oF(J,t 1
k=Kk =k — G _ 1 4
J=J=J ot N
Conspiracy for 2-body effects in 1D y=—cos(d 6

Vi + v, = Cst
Homoageneous
2 2 9
Vi + vy = cCst HMF model
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Kinetic theory of self-gravitating systems

Kinetic theory at order 1/N?

1/N? kinetic equation

Without collective effects ‘ Without inhomogeneity

oF(v) 1 o ZU(kpkz)@J dv,

A2 . \4
ot N+ ov P (v—vy)

X JdvzéD[(k1+k2) v—rFkivi—k, v2]

0 0 0
X ((kl + k) = ki o k, 0_\/2> F(v) F(vy) F(v,)

+ How do collective effects contribute?
+ How do frequency profiles contribute?
+ What is the structure of kinetic theories at higher order 1/N* ?
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Kinetic theory of self-gravitating systems

What's next?

Deviations

oF, 3 (F,)
— VS
ot ot




Kinetic theory of self-gravitating systems

Faking the dynamics
Kinetic theory predicts the ensemble average dynamics

Fy _—
Realisations Time
—

Ensemble Average

@ Balescu-Lenard
(Fa) —
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Kinetic theory of self-gravitating systems

Faking the dynamics
5(7)

One realisation vs. mean kinetic prediction
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Kinetic theory of self-gravitating systems

Faking the dynamics
" ry @
oF (F0)

What is the statistics
of (large) deviations?

[

Probability of a given realisation? Most likely realisation?

P (Ea®=Fo(0) P (Fo() = (Fo(®))

Can one fake realisations?

OF
6_td = BL[F,(5)] + nF,()] with the noise {nlFglnlFl) = 22
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Kinetic theory of self-gravitating systems

Faking the dynamics

J@) J(@)

Time-correlated noise Spatially-correlated noise

Independent random walks Simultaneous random walks
dJ dAJ
— =n(J@),t — = n(J,(2), J-(?), ¢
1 n(J @), 1) 7 n(J,(®), J,(0), 1)

How do nearby particles separate?
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Kinetic theory of self-gravitating systems

What's next?

Integrability

O(x, 1) # P, 1)




Kinetic theory of self-gravitating systems

Going beyond isolated, integrable, resonant

Systems are not always isolated
N = N(1)

SH(D)| = [6H(1)|,  + [6H(D)]

. T
oisson

Systems are not always integrable

dJ| _ d_J]

dr | | di

[dJ'
dr

resonant chaotic

Systems are not always “nicely” resonant

Q) = (), Q1))

Structure formation
Open clusters
Collisionless relaxation

Thickened discs
Barred galaxies

Flattened halos

Mean-motion resonances
Eviction resonances
Precession resonances
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Kinetic theory of self-gravitating systems

Conclusion
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Kinetic theory of self-gravitating systems

Kinetic theory of self-gravitating systems

Long-range interacting systems are ubiquitous

Inhomogeneous Self-gravitating Resonant
(X, V)
| : k - Q(J)
| E(w) |
()

Master equation for dressed resonant relaxation

oFJ,n 1.0 [Zk J 4y Sk - QWD) — K- ")
o NI | | B3, 3.k - QD)) |7

X (k- 0 Kk’ 0 )F(J N EFWJ, t)
aJ aJ’
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