
An SM tutorial for programming and
plotting

Gary Mamon

January 2, 2014

1 Introduction

SM (a.k.a. SuperMongo), written by Robert Lupton, is advertised by its author as a graphics
language. In fact, SM is much more than a graphics language, it is a high-level scripting
programming language! SM has the following advantages:

1. SM is fully vectorial,

2. SM can handle 2D arrays (one at a time),

3. SM allows for vectors of vectors,

4. SM can build vector names from scalars,

5. SM has excellent graphics,

6. SM is widely used in Astronomy.

2 Notation used in this tutorial

In this tutorial, ‘SM>’ is the SM prompt (which you do not type), blue courier font is for
typed text (italics for generic items), and green times font is for SM output.

3 Launching and exiting

To launch SM,1 type:
sm

To quit SM:
SM> quit

1SM works on UNIX, Linux, MacOSX via Terminal or X11 and Windows via Cygwin.

1

4 Variables and vectors

SM treats variables and vectors differently.

4.1 Variables

Variables are single (scalar) quantities that can be numbers or strings. Their values are assigned
with define and displayed with echo.

SM> define x 12.3 SM> define s abc

SM> echo $x SM> echo $s

12.3 abc

Variables can be combined:
SM> define t def

SM> echo $s""$t

abcdef

One can build a variable from a variable:
SM> define sdef xyz

SM> define u st

SM> echo $u

xyz

One can do arithmetic on variables. Enclose in parentheses to evaluate an expression and precede
by dollar sign to display it

SM> echo $(2.3+3.4) SM> define x 2.3 SM> define x 2.3

5.7 SM> define y 3.4 SM> define y 3.4

SM> define z ($x+$y) SM> echo $($x+$y)

SM> echo $z 5.7
5.7

One can list the values of the variables with
SM> list define

4.2 Vectors

Vectors are like lists or arrays. Their assignment is performed with set and their values are
displayed with print.

2

SM> set x = 23.4 SM> set y = {23.4 34.5} set z = 2, 3, .5 set s = {abc def}
SM> print {x} SM> print {y} SM> print {z} SM> print {s}
x y z s

23.4 23.4 2 abc
34.5 2.5 def

3

A one-element vector can be used in place of a variable. It is a question of philosophy. One can
define a variable and set a vector of the same name: the variable and vector are two separate
entities. The number of elements of a vector is obtained with dimen:
SM> echo dimension of x = $(dimen(x)), dimension of y = $(dimen(y))

dimension of x = 1, dimension of y = 2

One can list all the vectors and their dimensions with
SM> list set

SM is vectorized: it can do arithmetic on equal dimension vectors as fast as in Fortran or C.
On a laptop, it can do arithmetic on vectors of 107 elements in a fraction of a second. Here is a
typical example:
SM> set xx = 1, 3

SM> set yy = xx*xx-0.5

SM> print {xx yy}
xx yy

1 0.5
2 3.5
3 8.5

If a vector is defined with both numbers and strings, the numbers are stored as strings.
SM> set mix = {23.4 abc}

Vectors can be concatenated:
SM> set u = x concat y concat z

SM> print {x y z u}
x y z u

23.4 23.4 2 23.4
34.5 2.5 23.4

3 34.5
2

2.5
3

Vector elements are extracted with square brackets, with the C convention of counting from 0:

3

SM> set y2 = y[1] SM> define y2 (y[1]) SM> echo $(y[1])

SM> print {y2} SM> echo $y2 34.5
y2 34.5

34.5

There are two ways to loop over vectors: with do loops:
SM> set veclist = {x y z name}
SM> do i = 0, dimen(veclist)-1 {
>> echo dimension of vector $(veclist[$i]) is $(dimen(veclist[$i]))

SM> }
and with foreach loops:
SM> foreach v veclist {
>> echo dimension of vector $v is $(dimen(veclist[$i]))

SM> }
dimension of vector x is 13
dimension of vector y is 13
dimension of vector z is 13
dimension of vector name is 13

In both cases, the loop index is a variable. The foreach loop is simpler, while the do loop is more
powerful. To avoid slow code, one should avoid looping over vector elements when vectors have
over 103 or 104 elements. In other words, good SM programming (as in other script languages)
must be vectorial!

4.3 Summary of variables and vectors

Variables Vectors

define s 12.3 set v = 1, 2, 0.5

echo $s print {v}
12.3 v

1
1.5
2

define s delete delete v

5 Data handling

5.1 Reading data

The following is a basic example of reading data, assumed to be in an equal number of columns,
not necessarily formatted to be aligned, and separated by spaces, tabs (i.e. .tsv files), or com-
mas (i.e. .csv files).

4

SM> cd ~/CAT

SM> data catalog.dat

SM> lines 2 0 # skip one header line (read from 2nd to end (0))
SM> read {id 1.i x 2 y 3 name 4.s}
SM> print {id x y name}
id x y name

1 29.4 17.3 Sombrero
2 12.3 54.6 NGC33379
(...)

SM will automatically skip lines beginning with #. By default, SM read a column in floating
point (double precision if SM has been properly compiled). Otherwise append i or s to specify
integer and string columns, respectively (see example above).

5.2 Filtering data

One does not always wish to work with an entire data set, but on a subsample instead. SM is
particularly powerful to filter data. For example to pick up the values of x, y and name for even
values of id and positive values of x, one can write:

SM> foreach vec (x y name) {
>> set $vec = $vec if (id % 2 == 0 && x > 0)

>> }
SM> print { x y name}
x y name

12.3 56.4 NGC3379
(...)

Here, we used the % modulo operator.

The foreach index vec is a variable that takes, in succession, the values ‘x’, ‘y’, and ‘name’.
The new (filtered) vectors x, y and name will have equal dimensions, smaller or equal than
those of x, y and name.

If one has to do such filtering on several occasions, one can build a vector of vectors:
SM> set veclist = {x y name}
SM> foreach vec veclist {
>> set $vec = $vec if (id % 2 == 0 && x > 0)

>> }
with the same effect as before. One can even choose the same name for the vector of vectors
and for the index, as SM does not confuse variables and vectors.

5

5.3 Building a vector using a condition

Another very powerful construct in SM is that it can build vectors on conditions:
SM> set w = x > y ? 0 : y-x

SM> print {x y w}
x y w

29.4 17.3 0
12.3 54.6 42.3
(...)

The clause is like in C (the expression before the question mark is the question, that after the
question mark is the value if true, that after the colon is the value if false), but works on entire
vectors. The different vectors in the question, true-, and false-values must be of equal dimension.
The output vector is of the same dimension.

However, please note that the assignment to w is internally performed for all cases. Therefore,
if there is a floating exception, you need to work around it. For example, suppose you have
2 non-string vectors x and y of same dimension and you wish to create a vector ratio=y/x,
except that when x=0, ratio=–1. Then, instead of
SM> set ratio = y/x

or
SM> set ratio = x != 0 ? y/x : -1

both of which generate error messages when they encounter elements of x that are zero, one can
use a temporary dummy denominator, x tmp:
SM> set x tmp = x == 0 ? 1 : x

SM> set ratio = x == 0 ? -1 : y/x tmp

6 Plotting

SM was originally designed as a plotting package, so its plotting facilities are pretty good.

6.1 Plotting device

There are 2 basic plotting device families: screen and file. To set up plots for the screen, type:
SM> device x11

and all plotting commands will appear on the X11 screen.

To set up plots in a file, say myfile.eps, type:
SM> device postfile myfile.eps

(...)
SM> hardcopy

6

6.2 Basic plotting commands

The typical plotting commands involve setting the plot box limits, setting the line type or point
type, setting the width and color of the graphics, plotting as points, line or histogram. Suppose
you wish to plot sqrt(x) vs. x for x from 0 to 20 (once the device has been set):
SM> set x = 0, 20

SM> set sqrtofx = sqrt(x)

SM> limits x sqrtofx

SM> box

SM> xlabel x

SM> ylabel \sqrt{x}
SM> points x sqrtofx

If you wish connected points instead of symbols, replace points by connect.

If you have error bars in a vector esqrtofx, they can be plotted with
SM> error y x sqrtofx esqrtofx.

6.3 Plot settings

The basic plotting symbol is the polygon. The point type is set with ptype, which takes 2
arguments: the first is the number of sides of the polygon and the second is 0 for open polygons
and 3 for filled ones. If the second argument is 1, the polygon is replaced by a cross with as many
branches as the first argument. So to plot an open triangle, a filled circle (20-gon) or a cross, use
respectively ptype 3 0, ptype 20 3, or ptype 4 1 (the default). Symbols can be expanded,
say by a factor 2, with expand 2. They can be rotated by, say 45 degrees, with angle 45.

For line types, the default is solid, also achieved with ltype 0. Dotted and dashed lines can
be achieved with ltype 1 and ltype 2, respectively. Line widths are unity by definition, but a
quadruple line width is obtained with lweight 4.

The plot color can be set to say, red, with ctype red. The default is ctype default, which
sets the color to white on black screens like the default X11 device and to black on devices that
point to files. The colors can be abbreviated with numbers: 0 for default, 3 for red, 4 for green,
5 for blue, etc.

All these settings are permanent, i.e. they are valid until they are set to new values.

6.4 Logarithmic axes

Specifying logarithmic axes must be done before the box command. For semi-log plots, type:
SM> ticksize 0 0 -1 0

and for log-log plots, type:
SM> ticksize -1 0 -1 0

If the y error bars are linear, one should use logerry instead of error y.

7

7 Macros and macro files

SM works both interactively, and in macro files. Whereas the interactive interpreter allows for
command editing, and has a history (that can be traced back using up arrows or recalled using
a special character), it is best to save one’s work into files of SM macros. By convention, these
SM macro files have suffix .sm. Below is an example of an SM macro file.
square 1 # square of a vector

set $0 = $1*$1

The first line, with no indentation specifies the name of the macro and its number of arguments.
All other lines must be preceded by a TAB. Argument n is referenced by $n, while $0 is the
returning value (vector really). Comments follow the # signs. A comment on the first line will
be attached to this macro definition. If this macro square is in file macros.sm, one reads in this
file (once) and executes it as follows:
SM> set x = 1, 3

SM> macro read macros.sm

SM> set y = square(x)

SM> print {x y}
x y

1 1
2 4
3 9

The macro above is like a function in Fortran, returning a single entity. One can also define
macros to behave like Fortran subroutines, returning several entities as arguments:
rect2polar 4 # convert cartesian to polar coordinates

set $3 = sqrt($1*$1+$2*$2)

set $4 = atand($2/$1) # angle in degrees

It is called as follows:
SM> set x = {1.2 3.4 0}
SM> set y = {0 3.4 1}
SM> rect2polar x y rho theta

SM> print {x y rho theta}
x y rho theta

1.2 0 1.2 0
3.4 3.4 4.808 45
2 1 2.236 26.57

8 Global and local variables

In SM macros, all variables and vectors are global by default. This means that their values
are remembered outside of the macro. This means also that a variable (vector) in a macro will
overwrite the corresponding variable (vector) with the same name outside the macro. Moreover,

8

loop indices are erased once the macro is out of the loop, which erases the variable of the same
name outside the macro. These overwriting and erasing of global variables and vectors is a
common source of programming error.

To avoid these errors, it is good practice to specify for each vector and variable that it is local

to the macro:
define var local local define var 23.4

define var 23.4

set vec local local set vec = {23.4 35.6}
set vec = {23.4 35.6}

Or more globally:
mymacro 3

define var local

foreach var (xx yy zz vec) { define $var local }
foreach vec (x y z name id) { set $vec local }

(...)

9 Getting help

The basic SM commands (and many useless ones too) are listed with the command help. More
useful is to query a specific command, for example a standard SM command:
SM> help relocate

Syntax: RELOCATE X Y
or RELOCATE (X Y)

Set the current location to (x,y) without drawing a line. The first
form gives (x,y) in user coordinates, the second in screen coordinates
(0-32767).

One can also get help on one’s own commands:
SM> help rect2polar

Macro:
4 arguments

set $3 = sqrt($1*$1+$2*$2)
set $4 = atand($2/$1)

10 Gary’s shortcuts

To automatically access Gary’s 750+ SM macros from an IAP Linux machine, you must place
the following in your .sm file in your home directory:
macro2 /nethome/gam/SM/

9

Among, these are several very useful shortcuts:
h command → help command

a word → apropos word

e variable → echo $variable

e (expr) → echo $(expr)

dim vector → echo $(dimension(vector))

dim vector 1 → echo dimension(vector) = $(dimension(vector))

mr macro → macro read macro.sm

p vector1 (...) vectorn → print {vector1 (...) vectorn }
initplot fileprefix (0 for X11 device) → initialize plot (label sizes & line widths to publi-
cation quality)
endplot → save and view plot and reinitialize
plot2 vector1 vector2 → scatter plot of vector2 vs. vector1 with automatic axes and labels
plot2 vector1 vector2 1 1 → same with log axis ticks (automatic axes on positive values)

10

