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In the context of the geometrical analysis of weakly non Gaussian CMB maps, the 2D differential
extrema counts as functions of the excursion set threshold is derived from the full moments expansion
of the joint probability distribution of an isotropic random field, its gradient and invariants of the
Hessian. Analytic expressions for these counts are given to second order in the non Gaussian
correction, while a Monte Carlo method to compute them to arbitrary order is presented. Matching
count statistics to these estimators is illustrated on fiducial non Gaussian “Planck” data.
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Random fields are ubiquitous phenomena in physics
appearing in areas ranging from turbulence to the land-
scape of string theories. In cosmology, the sky-maps of
the polarized Cosmic Microwave Background (CMB) ra-
diation – a focal topic of current research – is a prime
example of such 2D random fields. Modern view of the
cosmos, developed primarily through statistical analysis
of these fields, points to a Universe that is statistically
homogeneous and isotropic with a hierarchy of structures
arising from small Gaussian fluctuations of quantum ori-
gin. While the Gaussian limit provides the fundamental
starting point in the study of random fields [1–3], non-
Gaussian features of the CMB fields are of great interest.
Indeed, CMB inherits a high level of gaussianity from ini-
tial fluctuations, but small non-Gaussian deviations may
provide a unique window into the details of processes in
the early Universe. The search for the best methods to
analyze non-Gaussian random fields is ongoing.

In paper [4] the general invariant based formalism for
computing topological and geometrical characteristics of
non Gaussian fields was presented. The general formulae
for the Euler characteristics to all orders has been de-
rived, which encompasses the well known first correction
[5] and which was later confirmed to the next order by [6].
We now focus on the statistics of the density of extremal
points which follows directly from the formalism of [4].
The goal of this paper is to provide an explicit recipe
on how to use this formalism in practice on idealised 2D
CMB “Planck”-like data.

I. EXTREMA COUNTS

Extrema counts, especially that of the maxima of the
field, have long application to cosmology [e.g. 3], how-
ever theoretical development have been mostly restricted
to the Gaussian fields. The statistics of extrema counts,
as well as of the Euler number, requires the knowledge

of the one-point joint probability distribution function
(JPDF) P (x, xi, xij) of the field x, its first, xi, and sec-
ond, xij , derivatives [12]. Extrema density is an intrinsi-
cally isotropic statistics given by [1, 7]

∂next

∂x
=

∫

d3xijP (x, xi = 0, xij)|xij | . (1)

Under the condition of statistical isotropy of the field, the
essential form for the JPDF is therefore given in terms
of the rotation invariants — x itself, the square of the
magnitude of the gradient q2 ≡ x2

1 + x2
2 and the two

invariants J1 ≡ λ1 + λ2, J2 ≡ (λ1 − λ2)
2 of the Hessian

matrix xij (where λi are the eigenvalues of the Hessian).

Introducing ζ = (x + γJ1)/
√

1 − γ2 (where the spectral
parameter γ = −〈xJ1〉 characterizes the shape of the
underlying power spectrum), leads to the following JPDF
for the Gaussian 2D field
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The invariant form for the extrema counts
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then readily recovers the classical results [1, 3, 7] when
the limits of integration that define the extrema type
are implemented, namely J1 ∈ [−∞, 0], J2 ∈ [0, J2

1 ] for
maxima, J1 ∈ [0,∞], J2 ∈ [0, J2

1 ] for minima and J1 ∈
[−∞,∞],J2 ∈ [J2

1 ,∞] for saddle points.
In [4] we have observed that for non-Gaussian JPDF

the invariant approach immediately suggests a Gram-
Charlier expansion in terms of the orthogonal polyno-
mials defined by the kernel G2D. Since ζ, q2, J1 and
J2 are uncorrelated variables in the Gaussian limit, the
resulting expansion is
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where terms are sorted in the order of the field power n

and
∑i+2j+k+2l=n

i,j,k,l=0 stands for summation over all combi-
nations of non-negative i, j, k, l such that i + 2j + k + 2l
adds to the order of the expansion term n. Hi are (prob-
abilists’) Hermite and Lj are Laguerre polynomials.

The Gram-Charlier coefficients,
〈

ζiq2j
J1

kJ2
l
〉

GC
≡

(−1)j+lj!l!
〈

Hi (ζ) Lj

(

q2
)

Hk (J1)Ll (J2)
〉

m
that appear

in the expansion can be related to the more famil-
iar cumulants of the field and its derivatives (we use
〈 〉m for statistical moments while reserving 〈 〉 for
statistical cumulants), actually being identical to them
for the first three orders n = 3, 4, 5. Lookup ta-
bles of the relationship between Gram-Charlier cu-
mulants and statistical cumulants can be found at
http://www.iap.fr/users/pichon/Gram/. As an illus-
tration, one sixth order non trivial cumulant would be
〈

J3
1J2ζ

〉

CG =
〈

J3
1J2ζ

〉

+
〈

J3
1

〉

〈J2ζ〉 + 3 〈J1J2〉
〈

J2
1 ζ
〉

. It
is prudent to stress that the Gram-Charlier series expan-
sion is distinct from the perturbative expansions. For
instance, while the linear Edgeworth or fNL expansion
match solely to the first order n = 3 Gram-Charlier coef-
ficients, quadratic terms require knowledge of the Gram-
Charlier terms to n = 6, while the cubic ones to n = 9.

Integrals over J1 and J2 for extremal points can be car-
ried out analytically even for the general expression (3).
Different types of critical points can be evaluated sepa-
rately by restraining the integration domain in the J1-J2

plane to ensure the appropriate signs for the eigenvalues.

The effect of the non-Gaussian cubic correction on the
total number of the extrema of different types is given by
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where we have restored (see note [11]) the dimensional
scaling with R∗ = σ1/σ2 , the characteristic separation
scale between extrema. The total number of saddles, as
well as of all the extremal points, nmax + nmin + nsad,
are preserved in the first order (the latter following for
the former, as topological considerations imply nmax −
nsad + nmin = const), but the symmetry between the
minima and the maxima is broken.

The differential number counts with respect to the ex-
cursion threshold ν are given by
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where K1, K2, K3 are polynomials with coefficients expressed in terms of the cumulants. Here we give explicit expres-
sions for the first non-Gaussian order, while the next order can be found at the above mentioned URL.

The term K1(ν, γ) has a special role determining the Euler number χ(ν) via ∂χ/∂ν = ∂/∂ν (nmax + nmin − nsad) =
√

2/π exp(−ν2/2)K1(ν, γ). As such, its full expansion has been given in [4], Eq. (7), and confirmed to the second
order in [6]. To the leading non-Gaussian order
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Introducing scaled Hermite polynomials H±
n (ν, σ) ≡ σ±nHn (ν/σ), the polynomial K2(ν, γ), the only one that

determines the distribution of saddle points, can be written as
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. (8)



3

The remaining term, K3(ν, γ) is the most complicated one. It is expressed as the expansion in H+
n (ν,

√

1 − γ2):
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Eqs (5)-(6) (together with the next order expansion avail-
able online) are the main theoretical result of this paper.

II. IMPLEMENTATION

Evaluating these estimators requires computing the cu-
mulants appearing in Eqs. (7)-(9). In non-Gaussian mod-
els where the field is represented by the functional of
a Gaussian field this may be possible directly, while in
general, as shown in [6], such cumulants can be found
as weighted marginals of the underlying bispectrum, (to
third order), trispectrum (to fourth order), etc.. On a
sphere, the high order marginals are particularly cum-
bersome and time consuming to compute, as they also
involve the contractions of n − j Wigner symbols. Here
we suggest a different route, based on the assumption
that scientists interested in fitting extrema counts to non-
Gaussian maps are typically in a position to generate
realizations of such maps. In that case, it becomes rela-
tively straightforward to draw samples of such maps, and
estimate the corresponding cumulants. The HEALPix [8]
library provides in fact a direct estimate of the deriva-
tives of such maps up to second order, which is all that
is required to compute the cumulants of the JPDF.

As an illustration, let us generate sets of parameter-
ized non-Gaussian maps using the package sky-ng-sim

[9] of HEALPix. In this so called harmonic model,
the PDF of the pixel temperature, T is given by

exp(−T 2/2σ2
0) |
∑n

i=0 αiCiHi(T/σ0)|2, where Ci are nor-
malization constants. In this paper, we use nside=2048,
ℓmax = 4096, n = 2, σ0 = 1, α0 = 0 and vary α1 and
α2. We also consider the second option of sky-ng-sim
which produces non Gaussian field as even power, β
of unit variance zero mean Gaussian fields. For each
set of maps, we compute its derivatives, and arithmeti-
cally average the corresponding cumulants, using a code,
map2cum relying on the HEALPix routine alm2map der.
Invariant variables J1 and J2 on a sphere are defined via
the mixed tensor of covariant derivatives J1 = x;i

;i and
J2 = J2

1 − 4
∣

∣x;i
;j
∣

∣. The differential counts are then eval-
uated for a range of threshold, ν ∈ [−5, 5]. For each of

these maps, the number of extrema is computed by the
procedure map2ext which implements the following algo-
rithm: for every pixel a segment of quadratic surface is
fit in the tangent plane based on the temperature values
at the pixel of origin and its HEALPix neighbours. The
position of the extremum of this quadratic, its height and
its Hessian are computed. The extremum is counted into
the tally of the type determined by its Hessian if its po-
sition falls within the original pixel. Several additional
checks are performed to preclude registering extrema in
the neighbouring pixels and minimize missing extrema
due to jumps in the fit parameters as region shifts to the
next pixel. Masks are treated by not considering pixels
next to the mask boundary. Pixel-pixel noise covariance
can be included while doing the local fit. On noise-free
maps the procedure performs with better than 1% accu-
racy when the map is smoothed with Gaussian filter with
FWHM exceeding 6 pixels. Both map2cum and map2ext

are available upon request. Figure 1 illustrates the very
good agreement between the theoretical expectation of
the differential number counts to the measured ones for
both the harmonic and the power-law models.

An alternative numerical procedure, broadly inspired
from importance sampling [e.g. 10], which is likely to be
more practical for expansion beyond the fourth order was
also successfully explored for 2D topological invariants.
Starting from Eq. (3), we re-express both the polyno-
mials in J1, J2, ζ, and q2 and G2D in terms of the six
field variables, (x, xi, xij). We then construct formally
the marginal Gν(x = (x11, x12, x22)|x = ν, x1 = x2 = 0),
where the latter condition corresponds to imposing that
we are seeking extrema of the field. It becomes straight-
forward to draw large sets of 3 random numbers satisfy-
ing Gν . For each triplets, x, and a given numerical set
of cumulants, we then compute the argument, I(x) of
the square bracket in Eq. (3) (up to some given order),
together with the two eigenvalues of the Hessian. For
maxima (resp. minima, resp. saddle points), we replace
I by 0 if the two eigenvalues are not negative (resp. pos-
itive, resp. of different sign). The sum over all triplets
yields a Monte Carlo estimate of ∂next/∂ν. The accuracy
of the estimate depends on the extent of rejection while
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FIG. 1: Top panel: the predicted (solid line) number of maxima (right), saddle (middle), and minima (left) in ∆ν = 0.25 bins
as a function of the threshold, ν, on top of the measured count from a single realization full-sky nside=2048 HEALPix map
(histogram). The temperature field is smoothed with the Gaussian filter of 10 arcmin FWHM, resulting in R∗ ≈ 5.5 arcmin
≈ 3 pixels. The dashed line corresponds to the Gaussian prediction. The left panel corresponds to the Harmonic Oscillator
model of non Gaussianity with α1 = 0.6, α2 = 0.6 (for which 〈x3〉 = −0.07), while the right panel corresponds to the power
law non Gaussianity with β = 2 (for which 〈x3〉 = 0.1). Bottom panel: the departure from Gaussianity for these two models as
predicted (solid line) and measured (dashed line) for maxima (light grey), minima (dark grey) and saddle points (grey). Note
that the corrections of Eqs (5)-(6) (solid line) give a very accurate match to the measured PDF. As is seen, different models of
non-Gaussianity can be distinguished by their effects on extrema.

applying the extremal condition.
Note in closing that all the presented analysis is

straightforwardly generalized to 3D (noticeably the
Monte Carlo method), as shown in [11], to describe the
large scale distribution of matter. Indeed in this context,
the gravitational instability that nonlinearly maps the
initial Gaussian inhomogeneities in matter density into
the LSS, induces strong non-Gaussian features culminat-
ing in the formation of collapsed, self-gravitating objects
such as galaxies and clusters of galaxies.
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