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Outline of the talk

" Non-resonant streaming instabilities near relativistic MHD

shocks (test particle limit).
= Particles in [RMHD] Cells framework

"= AMR PI[MHD]C code test cases:
4 CR filamentation instability in the precusors of shocks

4+ Magnetic field amplification and particle acceleration near

non-relativistic astrophysical shocks .



Particle acceleration and magnetic turbulence near

astrophysical shocks

* Observations exhibit non thermal high

energy emissions near astrophysical
shocks (e.g. Cassam-Chenal et al. 2004).

*Thin bright X-ray rims are observed at

the location of the forward shock (e.g.
Bamba et al 2006).

*X-ray rim structure in agreement with a

localized magnetic field amplification
(~10?% Bigm, €.8. Parizot et al 2006)

*Similar magnetic amplification is likely to
occur in GRB (external relativistic shocks,

e.g. Li & VWaxman 2006).

*Fermi acceleration is likely to take place
near the shock front.
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Non-resonant streaming instability near
ultra-relativistic MHD shocks

e RMHD shock setup

e RMHD simulations of magnetosonic wave
amplification in the precursor of RMHD shocks




Streaming instability near

relativistic shocks

°* When a significant supra-thermal particles production is achieved, a fast
instability regime is reached on MHD scales (e.g. Bell’04°05, Pelletier+06, Amato
& Blasi’09...).

* In the case of relativistic MHD shocks, growth rate of the instability is
(Pelletier et al’09, Casse et al.' | 3)
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* At kinetic wavelength a very efficient electromagnetic current-driven
instability is at work (Lemoine et al’14).

* The challenge for MHD codes is to be able to accurately describe the
amplification of short wavelength MHD waves in the shock precursor.

* MPI-AMRVAC (Keppens et al. 2012) is a finite volume RMHD code able to
compute the propagation of such waves.



RMHD shock structure

* Relativistic shocks are likely to exhibit near perpendicular magnetic
field.

* The equilibrium of the upstream medium is modified by the
electric charge carried by the thermal plasma.

* Non-resonant streaming instability is believed to efficiently

amplified short wavelength magnetic perturbations near relativistic
MHD shocks.
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Are Relativistic MHD codes able to capture CD instability ?
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Refinement MHD simulations describes
the magnetic perturbation growth.
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Casse et al. (2013)

Non-resonant streaming instability near relativistic shocks
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‘ We need to include the backreaction from CR




Multi-scale description of particle acceleration

Fermi acceleration
(Supra-thermal
particles)

Shock structure
(precursor and
downsiream
medium

Kinetic description

Magnetohydrodynamics

* In the past decade, Particle In Cells (PIC) codes have been able to address the DSA

mechanism.

« Computational costs prevent the description of the full acceleration region
(computational timescale of PIC simulations <<< macroscopic shock timecale).

e Multiscale simulations may be an option to partially alleviate the computational memory

and time issue !




Particle In MHD Cells

® Principles

o Adaptative Mesh Refinement & PI[MHD]C




PI[MHD]C principles

= Several studies have already used such approach to model current
driven instability (e.g. Lucek & Bell'00, Reville & Bell'13, Bai et al."15)

= We need to take into account the self-consistent backreaction of the
thermal plasma upon cosmic rays:

® Suprathermal particles described using some PIC techniques
® Thermal plasma and large scale B described by (RYMHD

= Supra-thermal particles dynamics is limited to the MHD scales (nho
microscopic instabilities can be treated).

= [Initiating the supra-thermal particles relies on PIC simulations input as
no self-consistent injection can be achieved in PI[MHD]C.

= Coupling PIC and MHD simulations requires modifications dealing with
the electromagnetic field treatment.



PI[MHD]C framework

= Both codes time-advance the electromagnetic field but in a different way
e PIC simulations solve the Maxwell equations.

e MHD relies on the Ohm’s law to express the electric field as a function
of other quantities.

= Ohm’s law with cosmic rays (cf Bai et al."15)
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=(0ne can safely neglect thermal electron pressure gradient because of usual
MHD ordering provided that the magnetic field is not much smaller than
equipartition.

= The classical Hall term is significant on scales smaller than c/oypi..
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PI[MHD]C framework

= Tn classical MHD, the momentum equation is modified because of the presence
of CR (neglecting Hall term) as well as induction and energy equations
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= In RMHD, the displacement current changes the definition of some conserved
quantities such as relativistic MHD momentum (tricky switch from primitive to
conservative quantities)
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= The PIC motion equation related to the particles is also modified according to
the new Ohm’s law
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HPC and PI[MHD]C code

= PI[MHD]C version of MPI-AMRVAC is based an MPI finite volume code using
an adaptative mesh refinement grid organized as an quad(oct)-tree in 2D(3D).
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= Flux at cell interface is computed using various slope limiter (“upwind”
scheme) and various type of solvers can be considered (TVD-MUSCL, Lax-

Friedrichs, HLLC, HLLE, Roe, etc...).

= AMR also influences the way suprathermal particles charge and current are
translated to the MHD code as (electrical charge conservation).



AMR & PI[MHD]C code

= The structure of the grid is controlled by an Adaptative Mesh Refinement
(AMR) algorithm that locally enforces resolution where needed.

= Refinement/coarsening is triggered by user’s defined criterion: e.g. Lohner’s

criterion Ay
W, .
Tol, = E g, ——— — refine
=~ wr+¢€
Aw? .
Tol, = E g — — coarsen with 7Tol, >Tol,
~ W, +¢€

= PIC quantities also have to be considered in the refinement criterion
v High CR density should be described with high resolution

v Refinement/coarsening helps to keep the computing MPI effciency of
the code.

= Grids are dynamically dispatched using MPI with a Morton load balance
algorithm (weak scaling remains good with particles !)



Basics of Particle in MHD Cells simulations

MHD timestep
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Two applications of AMR PI[MHD]C

¢ CR filamentation in shock precursors

e Magnetic field amplification & particle acceleration
near non-relativistic shocks




Testing CR filamentation

= Reville & Bell'l2 has presented
2D PIC/MHD computations of the
filamentation instability induced by s IESSw SN
CR in shock precursors. BB S8 CIR S e

= Perpendicular turbulent B field ENgsaries
(Kolmogorov spectrum).

= Uniform CR current along the @&
mean B field.

=AMR triggered by gas density PRSP v
gradient and high CR charge™ 01 ot g S ity
density.
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Testing CR filamentation
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Close-up of a filament
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Close-up of a filament
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Close-up of a filament
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Effect of AMR upon PI[MHD]C simulations
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CR filamentation near shocks

= Non-relativistic super-Alfvénic shock with parallel magnetic field in the shock rest
frame (same physical conditions than in Bai et al."15).

= Continuous injection of mono-energetic particles near the shock front with
random velocity orientation (Vinj ~ 3Vsh).

= AMR is triggered using 5 refinement levels with a base resolution of 320x30 cells
-» effective resolution 5120x 480 cells (run performed on local workstation with
20 CPUs in 1 day)

= Simulation box size is 28,000 x 3,000 in ¢/wy; units.
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CR filamentation near shocks
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CR filamentation near shocks
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CR filamentation near shocks

Supra—thermal particle spectrum
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Outlook

= Applications presented here were mostly test cases
showing the benefit we can get from PI[MHD]C simulations
with AMR.

= AMR PI[MHD]C simulations show promising computing
performances (will it be enough to describe the whole
shocks structure ?).

= The implementation of PI[RMHD]C will enable us to
explore the whole velocity regime of astrophysical shocks.

= | arge-scale computations should help us to reach a wider
CR dynamical range.



