PIC modeling of particle acceleration and high-energy radiation in pulsars

Benoît Cerutti

IPAG, CNRS, Université Grenoble Alpes

In collaboration with : Sasha Philippov (Princeton), Anatoly Spitkovsky (Princeton), Jérémy Mortier (U. Grenoble Alpes)

Beyond a PeV, Sept. 13-16, 2016, Paris.

© Casey Reed

Pulsars shine throughout the electromagnetic spectrum

Most Galactic accelerators are pulsars

Pulsars emitting gamma rays young and ms, i.e., rotation-powered

Pulsars are efficient particle accelerators

How does the star spin-down? How is this energy transferred to particles and radiation?

Typical gamma-ray pulsar signal

How and where are particle accelerated and radiate?

Elements of a pulsar magnetosphere: vacuum

Magnetosphere

Rotation of the field lines induce electric field :

 $E = \frac{R \,\Omega \,B}{c}$

Potential difference pole/equator :

$$\Delta \Phi = \frac{R^2 \Omega B}{c} \approx 10^{16} V$$

(for a Crab-like pulsar)

Beyond a PeV!

Elements of a pulsar magnetosphere: plasma filled

Elements of a pulsar magnetosphere: plasma filled

Proposed sites for particle acceleration

Proposed sites for particle acceleration

Models dependent on the geometry of the magnetosphere

Insight from the MHD approach

(Force Free / Resistive Force Free / Full MHD)

Ideal Force-Free field geometry with prescribed emitting field lines

Bai & Spitkovsky 2010a,b

Non-ideal Force-Free with prescribed resistivity

Li et al. 2012; Kalapotharakos et al. 2012, 2014

Favor high-energy emission from the outer magnetosphere + current sheetAd-hoc accelerating/radiating zones, large uncertaintiesNeed for self-consistent approach

B. Cerutti

PIC simulations !

Global 3D spherical PIC with radiation reaction force

Zeltron code : http://benoit.cerutti.free.fr/Zeltron/

<u>Assumption</u> : Large plasma supply provided by the star surface = **Efficient pair creation**

Apply for synchrotron and curvature radiation

Particle / radiation mean energy (χ=30°)

Cerutti et al. 2015b

Particle acceleration via relativistic reconnection in the current sheet High-energy radiation is synchrotron radiation

Particle energy in the sheet given by :

$$\sigma_{LC} = \frac{B_{LC}^2}{4 \pi \Gamma n_{LC} m_e c^2} \approx 50 \quad \text{(here)}$$

B. Cerutti

See also in 2D axisymmetric Cerutti et al. 2015

Particle / radiation spectra

Particle acceleration and emission of energetic radiation decreases with pulsar inclination

Cerutti et al. 2016a

High-energy radiation flux ($v > v_0, \chi = 0^\circ$)

B. Cerutti

Cerutti et al. 2016a

High-energy radiation flux ($v > v_0, \chi = 30^\circ$)

B. Cerutti

Cerutti et al. 2016a

High-energy radiation flux ($v > v_0, \chi = 60^\circ$)


```
Cerutti et al. 2016a
```

High-energy radiation flux ($v > v_0, \chi = 90^\circ$)

Cerutti et al. 2016a

<u>Observed</u> high-energy radiation flux ($v > v_0, \chi = 0^\circ$)

Gray : Total flux (all directions) Color : Observed flux

i=0 - Phase=0.00 - Positrons -

<u>Observed</u> high-energy radiation flux ($v > v_0, \chi = 30^\circ$)

Gray : **Total** flux (all directions) **Color** : **Observed** flux **Light curve shaped by the geometry of the current sheet**

i=30 - Phase=0.00 - Positrons -

Cerutti et al. 2016a

Two-peaked lightcurves are very generic

One peak per crossing of the current sheet

B. Cerutti

Cerutti et al. 2016a

B. Cerutti

2D

2D (aligned pulsar)

Cerutti et al. 2015

B. Cerutti

Cerutti et al. 2016a

In the co-rotating frame

Cerutti et al. 2016a

Application to the Crab pulsar

0.2

0.4

 Φ_p

0.6

0.8

1.0

0.4

0.2

0.0

-0.2

0.0

Consistent with the nebula morphology in X-rays

[e.g. Weisskopf+2012]

(Incoherent) Polarization signature

The Crab pulsar as we may see it !

Gray : **Total** flux (all directions) **Color** : **Observed** flux

i=60 - Phase=0.00

Conclusions

- **Global PIC simulations is the way to go** to solve particle acceleration in pulsars
- Simulations demonstrate the major role of **relativistic reconnection** in particle acceleration
- High-energy emission could be synchrotron radiation from the current sheet >~ R_{LC}
- **Pulse profile and polarization** provide robust constraints on **Crab pulsar** inclination and viewing angles.
- More work needed to **compare simulations to observations.**