Some new (old) ideas about particle acceleration and other topics

Tsvi Piran

The Hebrew University

Evgeny Derishev, Daniel Kagan, Ehud Nakar, Glennys Farrar

Paris Sept 13-16, 2016

Outline

- Shock Acceleration (Derishev & TP, MNRAS, 460, 2036, 2016)
- Reconnection (Kagan, Nakar & TP, ApJ, 826, 221, 2016; Kagan, Nakar & TP, submitted)
- UHECRs from TDEs (Farrar & TP, 2014, arXiv1411.0704)

I. Particle Acceleration in Relativistic Shocks

(Derishev and TP, 2016; Garasev & Derishev 2016)

I. Particle Acceleration in Relativistic Shocks

(Derishev and TP, 2016; Garasev & Derishev 2016)

"An idea for an idea" John Wheeler

Diffusive shock Acceleration

Magnetic Field Generation and Decay (Gruzinog, 99, Lemoine, 2013)

Converter acceleration Derishev et al. (2003); Stern (2003)

Converter acceleration via high energy (IC) photons

Accelerate the flow Produce magnetic field via Weibel Instability

B 2) Produce magnetic field via Weibel Instability

via Weibel Instability

Garasev & Derishev 16)

Decaying magnetic field, in the downstream, accelerates particles

Decaying magnetic field, in the downstream, accelerates particles

Pairs from the upstream increase the multiplicity of the downstream

Pairs from the upstream increase the multiplicity of the downstream

Length Scales

 $l_s = \left(\frac{\Gamma m_p c^2}{4\pi e^2 n_p}\right)^{1/2} \simeq \frac{4 \times 10^5 \,\mathrm{cm}}{n_1^{1/2}}$ Skin Depth $l_d = \lambda l_s \approx l_{abs} = R/\Gamma/\tau_c$ Decay≈ Absorption $\tau_c \simeq 50 \,\sigma_{\gamma\gamma}_{,-25} \,\epsilon_B R_{16} \Gamma_2^2 n_3 \,\frac{m_e c^2}{E_{n,lob}}$ $l_c = \frac{3\beta_d m_e c^2}{4\sigma_T \gamma (1+y)e_B} \simeq \frac{5 \times 10^9}{\gamma_3 \Gamma_2^2 n_3 \epsilon_B} \text{ cm}$ Cooling (downstream) $l_s \ll l_c \ll l_d < R/\Gamma$

$$\leftarrow I_d \rightarrow \leftarrow I_{abs} \rightarrow$$

$$\gamma_{cr} E_p = \gamma_{cr}^3 \hbar \omega_B = m_e c^2$$

$$\gamma_{cr}E_p = \gamma_{cr}^3 \hbar \omega_B = m_e c^2$$

 $\leftarrow I_d \rightarrow \leftarrow I_{abs} \rightarrow$

Self-regulation The process stops at $\nu_{IC} \simeq \nu_{KN}$

$$\gamma_{cr} E_p = \gamma_{cr}^3 \hbar \omega_B = m_e c^2$$

Downstream synch SED

Power law elns

Thermal elns

$$E_{p,lab} = \Gamma E_p \sim 400 \,\mathrm{keV} \times \frac{\Gamma_3^{2/3} L_{iso,51}^{-1/6}}{R_{13}^{1/3}}$$

SED thermal Downstream + Shock

I. Summary

- With classical parameters the peak flux (at the self regulation point) is consistent with both prompt and afterglow
- Three emission components flexibility in the spectrum (Different Fermi components?)
- But high energy component ~I GeV?

2. PIC simulations of Reconnection

(Kagan, Nakar Piran, 2016a, b)

Questions

- Beaming of particles and synchrotron radiation?
- The effects of the burnoff limit and the resulting synchrotron spectrum

Methods

- PIC
- Cooling without cooling

2D PIC simulations

- •Tristan-MP particle-in-cell code (Spitkovsky 2008) with current density filtering algorithm that reduces particle noise
 - I 6 particles per cell (similar results for up to 50 particles per cell)
 - •Skin depth is set to $\lambda_{D} = 8\Delta$ (similar results for up to 20 Δ)
- •Simulation setup:
 - •Pair plasma
 - •Use Harris current sheet with sheet width $\delta = 3\lambda_{2}$
 - •2D simulations with L $_x$ x L =800 λ_p x 640 λ_p (6400 Δ x 5120 Δ)
 - Periodic boundary conditions
- •Set background magnetizations of σ =4, 40, and 400

Schematic of Reconnection

Results during nonlinear reconnection

- •Outflow velocities are small, typically $/mc \le 2$
 - Agrees with Guo+14,15 but not with Sironi+14:a system size, initial values or boundary condition issue?

•Fast inflows and thick current sheets found for σ =40, 400

• Consistent with previous work (e.g. Bessho and Bhattacharjee 2012)

Schematic motion of an electron y

- Particle enters X-point, and is accelerated by electric field (initial acceleration occurs here)
- Deflected towards the magnetic island by the reconnected field
- Then it is isotropized in the island
- Acceleration in the islands can be important, but it won't produce beaming
- Unclear that Fermi acceleration happens at high energy when cooling present

Synchrotron Radiation Calculations

- •Particles are accelerated mostly in the X-points, so
 - Fast cooling corresponds to X-point emission
 - Slow cooling corresponds to island emission
- Effective magnetic field from the curvature of particle trajectories (Wallin et al 2015)

$$B_{\rm eff} = \frac{mc\gamma}{q} \frac{\sqrt{p^2 F_L^2 - (\mathbf{p} \cdot \mathbf{F}_L)^2}}{p^2}$$

• Synchrotron formula to calculate radiation

$$\frac{dF_{\omega}}{d\omega} = \frac{\sqrt{3}q^3 B_{\rm eff}}{2\pi mc^2} F\left(\frac{\omega}{\omega_c}\right) \qquad \qquad \omega_c = \frac{3qB_{\rm eff}\gamma^2}{2mc}$$

Fast cooling- strong beaming

Slow cooling- no beaming

Fast cooling and the
synchrotron burnoff limit
$$mc^{2}\left(\frac{d\gamma}{dt}\right)_{accel} = qEc, \qquad mc^{2}\left(\frac{d\gamma}{dt}\right)_{rad} = -\frac{2q^{4}B^{2}\gamma^{2}}{3m^{2}c^{3}}.$$

- For fast cooling, particles must have X-point beaming
- Fast cooling only occurs if

$$\gamma > \sqrt{\frac{B}{E}} \gamma_{\rm bc} \qquad \gamma_{\rm bo} = \sqrt{\frac{3m^2c^4E}{2q^3B^2}}.$$

 Peak emission energy ε is from fast cooling particles only if it's above the synchrotron burnoff limit

$$\epsilon > \frac{9mc^3h}{4q^2} \sim 100 \text{ MeV},$$

This is way above the energy of GRBs and (most) AGNs!

Particle Trajectories

- Trajectories are Speiser orbits
- Cooled and uncooled trajectories similar in 99% of cases

The effective burnoff limit - cooling with no cooling

Particles are limited by an effective burnoff limit determined by the average fields they experience.

$$\gamma_{\rm bo} = \xi \gamma_{\rm bo,0} \qquad \xi = \sqrt{\left\langle \frac{EB_0^2}{E_0 B^2} \right\rangle} \qquad \gamma_{\rm bo,0} = \sqrt{\frac{3m^2 c^4 E_0}{2q^3 B_0^2}}$$

 ξ is the burrowing parameter of the particle.

The cooled Lorentz factor is given by

$$\bar{\gamma} = \min(\gamma, \xi \gamma_{\mathrm{bo},0})$$

Comparison of predicted and observed cooling

The prediction (red-dashed line) works quite well (within 20%) for the vast majority of particles

Relationship between ξ and γ

Distribution at constant γ is uniform up to

 $\xi_{\max}(\gamma) = a\gamma^{\beta}$ $a = 2.2, \ \beta = 0.40$ The maximum is consistent with analytical results for Speiser orbits without strong radiation [2], which predict β =0.5.

Effect of cooling on a power law distribution

For a power law distribution $N(\gamma) = \frac{p-1}{\gamma^p}$

A joint probability distribution is approximately given by

$$N(\gamma,\xi) = (p-1)\frac{\gamma^{-p}}{\gamma^{\beta} - 1} \quad 1 < \xi < \gamma^{\beta}$$

The distribution of $\ \ \bar{\gamma} = \min(\gamma, \xi \gamma_{\mathrm{bo},0})$ is then given by

$$N(\bar{\gamma}) = N_0 \begin{cases} \bar{\gamma}^{-p} & \bar{\gamma} \leq \gamma_{\text{bo},0} \\ \bar{\gamma}^{-p}(1+\kappa\bar{\gamma}^{-\beta}) & \gamma_{\text{bo},0} < \bar{\gamma} \leq \gamma_{\text{br}} \\ \gamma_{\text{br}}^{-p}(1+\kappa\gamma_{\text{br}}^{-\beta})(\frac{\bar{\gamma}}{\gamma_{\text{br}}})^{-(p+\beta-1)/\beta} & \bar{\gamma} > \gamma_{\text{br}} \end{cases}$$
$$\kappa = \frac{p-1+\beta^2-\beta p+\beta}{\beta+p-1} \quad 0 < \kappa < 1 \qquad \gamma_{\text{br}} = \gamma_{\text{bo},0}^{\frac{1}{1-\beta}} \gg \gamma_{\text{bo},0}$$

We expect no significant effect from cooling below the break-Even then, the break is not very sharp:

For
$$p = 1.7$$
, $\beta = 0.5$, $(p + \beta - 1)/\beta = 2.4$

Comparison of fully cooled vs. uncooled energy spectra

- Distributions are fairly similar
- No cutoff at the burnoff limit!

2. Summary

- The trajectories of accelerating particles are weakly affected by cooling.
- The acceleration of a particle in a cooled simulation may be derived from its acceleration in the uncooled simulation and its burrowing parameter by using the prescription:

$$\bar{\gamma} = \min(\gamma, \xi \gamma_{\mathrm{bo},0})$$

- More highly accelerated particles have higher effective burnoff limits, consistent with analytical Speiser orbit calculations.
- A power law distribution is not strongly affected by cooling until far above the burnoff limit at .
- The energy spectrum in simulations with cooling of all particles is similar to that in uncooled simulations, and has no cutoff at the synchrotron burnoff limit.

3.TDEs as UHECRs Sources (Farrar & TP 14)

Transient Protonic UHECR

SOURCES (Waxman & Loeb 08)

- Hillas RB > 10¹⁷ Gauss cm =>
- $L_B \sim (RB)^2 > 10^{45} \text{ erg/sec} =>$
- One continuous source within the GZK distance (100 Mpc) produces all the observed UHECR flux.
- But angular distribution suggests many sources

(Giannios & Metzger & 11 - jets in TDEs)

Radio observations (Zuaderer+11, Berger +12)

Equipartition analysis (Barniol Duran & TP 12)

TDE 1644 in radio

(Barniol-Duran + TP; 13)

Energy input and Rates $\Gamma_{\text{TDE}} = (0.4 - 0.8) \cdot 10^{-7 \pm 0.4} \, \text{Mpc}^{-3} \, \text{yr}^{-1},$

- From Observations of 2 Swift TDEs
- From X-ray estimates

 $\approx 3 \times 10^{-11} \text{ Mpc}^{-3} \text{ yr}^{-1}$ $\approx 3 \times 10^{43} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$

• With energy estimates from the radio and beaming estimate

 $2 \times 10^{44} (f_b/10^{-3})^{-1} \mathrm{erg} \,\mathrm{Mpc}^{-3} \,\mathrm{yr}^{-1}$

3. Summary

- (Some) TDEs satisfy the Hillas conditions for acceleration of protonic UHECRs to 10²⁰ev
- The overall rate and energy available are compatible with the UHECRs flux
- Effective rate (and energy) of ``jetted" TDEs might be too small. A comparable problem to GRBs (a factor of 10?)