Particle Acceleration in Relativistic Magnetic Reconnection

Lorenzo Sironi (Columbia) Workshop "Beyond a PeV", IAP, September 14th 2016 with: Giannios, Komissarov, Lyutikov, Petropoulou, Porth, Spitkovsky

• Well beyond a PeV:

UHECRs from magnetic reconnection events in blazars.

• Slightly above a PeV:

Explosive reconnection in PWNe and the Crab Nebula gamma-ray flares.

The PIC method

Relativistic magnetic reconnection

What is the long-term evolution of relativistic magnetic reconnection?

Dynamics and particle spectrum

Hierarchical reconnection

2D PIC simulation of $\sigma {=} 10$ electron-positron reconnection

• The current sheet breaks into a series of secondary islands (e.g., Loureiro+ 07, Bhattacharjee+ 09, Uzdensky+ 10, Huang & Bhattacharjee 12, Takamoto 13).

- The field energy is transferred to the particles at the X-points, in between the magnetic islands.
- Localized regions exist at the X-points where E>B.

Inflows and outflows

2D PIC simulation of $\sigma {=} 10$ electron-positron reconnection

- Inflow into the layer is non-relativistic, at $v_{in} \sim 0.1$ c (Lyutikov & Uzdensky 03, Lyubarsky 05).
- Outflow from the X-points is ultra-relativistic, reaching the Alfven speed $v_A = c \sqrt{\frac{\sigma}{1+\sigma}}$

In 3D, the in-plane tearing mode and the out-of-plane drift-kink mode coexist.
The drift-kink mode is the fastest to grow, but the physics at late times is governed by the tearing mode, as in 2D.

The particle energy spectrum

• At late times, the particle spectrum approaches a power law $dn/d\gamma \propto \gamma^{-p}$

• The max energy grows linearly with time, if the evolution is not artificially inhibited by the boundaries.

500

1000

Time $\left[\omega_{p}^{-1}\right]$

1500

2D in-plane

Time -

 10^{2}

(LS & Spitkovsky 14)

The power-law slope

2D electron-positron

(LS & Spitkovsky 14, see also Melzani+14, Guo+14,15, Werner+16)

The power-law slope is harder for higher magnetizations.

Particle acceleration mechanisms

The highest energy particles

Two acceleration phases: (1) at the X-point; (2) in between merging islands

(2) Fermi process in between islands

650

600

 \mathbf{x}

 (c/ω_{p})

-20

550

ISIANDS
The particles are

accelerated by a Fermi-like process in between merging islands (Guo+14, Nalewajko+15).

- Island merging is essential to shift up the spectral cutoff energy.
- In the Fermi process, the rich get richer. But how do they get rich in the first place?

(1) Acceleration at X-points

• In cold plasmas, the particles are tied to field lines and they go through X-points.

• The particles are accelerated by the reconnection electric field at the X-points (Zenitani & Hoshino 01). The energy gain can vary, depending on where the particles interact with the sheet.

• The same physics operates at the main X-point and in secondary X-points.

Plasmoids in relativistic reconnection

Plasmoids in reconnection layers

electron-positron $\sigma = 10$ $ct_{leb}/L = 0.0$ L~1600 c/ ω_p

_	0.1	Density				30
, [I	0.0	ltflow		B0	utflow	10
У	-0.1	ō			ō	Ĭ
	0.4	Magnetic energy				
Г	0.1				-	100
<u>نن</u> م	0.0					10
У	-0.1				-	1
	-0.1					0
	D.1	Kinetic energy				1.00
[]					-	
	0.0					- 10
λ	-0.1					1
_	0.1	Outflow momentum				- 2
Ξ.	0.0				- 	0
У,	0.0				-	
	-0.1					-2
	-1	-0	0.5 0	.0 0.	.5 1	.0
			х,	[L]		

Plasmoid space-time tracks

We can follow individual plasmoids in space and time.

First they grow, then they go:

• First, they grow in the center at non-relativistic speeds.

• Then, they accelerate outwards approaching the Alfven speed ~ *c*.

Plasmoid fluid properties

Plasmoids fluid properties:

- they are nearly spherical, with Length/Width~1.5 (regardless of the plasmoid width w).
- they are over-dense by ~ a few with respect to the inflow region (regardless of *w*).
- $\varepsilon_{\rm B} \sim \sigma$, corresponding to a magnetic field compressed by $\sim \sqrt{2}$ (regardless of *w*).
- $\varepsilon_{kin} \sim \varepsilon_B \sim \sigma \rightarrow equipartition$ (regardless of *w*).

First they grow, then they go

σ =10 electron-positron

The plasmoid width *w* grows in the plasmoid rest-frame at a constant rate of ~0.1 c (~ reconnection inflow speed), weakly dependent on the magnetization.

 Universal relation for the plasmoid acceleration:

$$\Gamma \frac{v_{\text{out}}}{c} \simeq \sqrt{\sigma} \tanh\left(\frac{0.1}{\sqrt{\sigma}}\frac{x}{w}\right)$$

Non-thermal particles in plasmoids

σ =10 electron-positron

• The *comoving* particle spectrum of large islands is a power law, with the same slope as the overall spectrum from the layer (so, harder for higher σ).

• The low-energy cutoff scales as $\propto \sqrt{\sigma}$, the highenergy cutoff scales as $\propto w$, corresponding to a Larmor radius ~0.2 w (a confinement criterion).

 Small islands show anisotropy along z (along the reconnection electric field).
 Large islands are nearly isotropic.

The transition happens at $w\sim 50\,\sqrt{\sigma}\,c/\omega_{
m p}$

From microscoPIC scales to blazars

Let us measure the system length L in units of the post-reconnection Larmor radius:

 $r_{0,\text{hot}} = \sigma \frac{mc^2}{eB_0}$

Relativistic reconnection is a self-similar process, in the limit $L \gg r_{0,hot}$:

• The width of the biggest ("monster") islands is a fixed fraction of the system length L (~0.1-0.2 L), regardless of L/r_{0,hot}.

• At large L (L/ $r_{0,hot} \gtrsim 300$), the Larmor radius of the highest energy particles is a fixed fraction of the system length L (~0.03-0.05 L), regardless of L/ $r_{0,hot}$.

 \rightarrow Hillas criterion of relativistic reconnection

UHECRs from reconnection in blazars?

From PIC simulations of relativistic reconnection in blazars:

 the max energy particles have Larmor radius

 $r_{L,\max} \sim 0.04 L$ $r_{L,\max} \sim 0.2 w_{\max}$

- From the typical timescale $t_f \sim 10^5$ s of blazar major flares, one can infer the size w_{max} of the largest plasmoids, and so $r_{L,max}$.
- The highest energy ions will have (if the jet Doppler factor δ ~10)

 $E_{\rm UHECR} \sim 5 \times 10^{18} Z \Gamma_1 \delta_1 B_0 t_{\rm f,5} \,\mathrm{eV}$

Alternatives?

Internal shocks in relativistic jets

Magnetized (σ >10⁻³) quasi-perp relativistic shocks are poor particle accelerators:

Bo

 B_0^2

→ Fermi acceleration is generally suppressed

Only trans-relativistic ($\gamma_0 \sim a$ few) magnetized ($\sigma > 0.03$) quasi-parallel shocks satisfy the constraints.

External shocks in GRBs

Particle acceleration via the Fermi process in self-generated Weibel turbulence, for initially unmagnetized (i.e., $\sigma=0$) or weakly magnetized flows.

By scattering off the small-scale Weibel turbulence, the acceleration rate is slow: $\gamma \propto t^{1/2}$

 \rightarrow Maximum proton Lorentz factor: γ

$$\gamma_{\text{age},i}^{\text{up}} \simeq 1.7 \times 10^8 E_{0,54}^{3/4} n_0^{-1/2} R_{17}^{-7/4}.$$

(Plotnikov, Pelletier & Lemoine 12, LS et al 13, Reville & Bell 14)

The Pevatron in our backyard

Doubling time of ~8 hrs, with peak photon flux~30 times larger than the average.

The flare spectrum below the GeV peak and the lack of X-ray detections require p<2.

Flux decay of ~ 10 hrs is controlled by synchrotron cooling + GeV peak frequency → PeV electrons radiating in ~ mG magnetic fields

The GeV flares in the Crab Nebula

Constraints:

- Particle acceleration by E~B (energy gain and losses on Larmor radius scale).
- Particle acceleration on macroscopic scales » skin depth. Evolution on ~ dynamical time.
- Few particles are accelerated (with hard spectrum) beyond the synchrotron burnoff limit.

Force-free magnetic field configurations

X-point collapse

Core-envelope flux tubes

ABC structures

Lundquist flux tubes

$$\mathbf{B}_L(r \le r_j) = J_1(r\alpha)\mathbf{e}_\phi + J_0(r\alpha)\mathbf{e}_z$$

color: Bz

(Lyutikov, Sironi, Komissarov & Porth 16, submitted to a special issue of JPP)

Merger of magnetized flux ropes

Flux ropes are pushed together by hand, "eroding" the envelopes
 → first episode of particle acceleration, dependent on the initial push.

force-free simulation at time=0, 2, 4, 6, 9

Mechanism of particle acceleration

 σ_{in} =42 L/ $\sigma_{in}^{1/2}$ =62 c/ ω_p kT/mc²=cold

- Most of the particles that will reach high energies are injected near the most violent phase of evolution.
- Particle injection happens in regions where E·B≠0, and particle acceleration is governed by the reconnection electric field.
- The highest energy particles are highly anisotropic (see also Cerutti+ 12, 13).

Dependence on the flow parameters

• The reconnection rate is $\sim 0.3 \rightarrow E/B \sim 0.3$.

• For $\sigma_{in} \ge 10$, the power-law slope is hard: $\rho \le 2$.

• The high energy cutoff grows linearly with the flux rope radius r_j and with the magnetization $\sigma_{in} \rightarrow acceleration$ on dynamical (~r_j) length scales.

Beyond the synchrotron burnoff

Synchrotron burnoff limit: balance of acceleration by E~B with synchrotron cooling gives

 $\gamma_{\rm max} \propto B^{-1/2}$ $h\nu_{\rm sync,max} \sim 150 \; {\rm MeV}$

Beyond the synchrotron burnoff

Synchrotron burnoff limit: balance of acceleration by E~B with synchrotron cooling gives

 $\gamma_{\rm max} \propto B^{-1/2}$ $h\nu_{\rm sync,max} \sim 150 {\rm MeV}$

• Particles are accelerated in the (macroscopic) current sheet, where B is small, and they can be accelerated beyond the synchrotron burnoff limit.

(see also Cerutti+ 12,13 for plane-parallel reconnection).

(Sironi+ 16, in prep)

Summary

• Relativistic magnetic reconnection ($\sigma \ge 1$) is an efficient particle accelerator, in 2D and 3D. It produces non-thermal particles, in the form of a power-law tail with slope between -4 and -1 (harder for higher magnetizations), and maximum energy growing linearly with time.

• Plasmoids generated in the reconnection layer are in rough energy equipartition between particle and magnetic energy. They grow in size near the center at a rate ~0.1 *c*, and then accelerate outwards up to a four-velocity $\sim \sqrt{\sigma}$.

• "Monster" plasmoids of size ~0.2 L are generated once every ~2.5 L/c, their particle distribution is quasi-isotropic and they contain the highest energy particles, whose Larmor radius is ~0.04 L (*Hillas criterion of relativistic reconnection*). In blazar jets, reconnection can accelerate UHECRs.

• Explosive reconnection driven by large-scale stresses is fast (~ few dynamical times), efficient and can produce hard spectra, in both 2D and 3D, as required by the Crab Nebula GeV flares.