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Outline
•Well beyond a PeV: 

UHECRs from magnetic reconnection events in blazars.

(Striani et al. 11)

•Slightly above a PeV: 

Explosive reconnection in PWNe and the Crab Nebula gamma-ray flares.



 

      No approximations, full plasma physics of ions and electrons

 Tiny length-scales (c/ωp) and time-scales (ωp-1) need to be resolved:                               

! huge simulations, limited time coverage

The PIC method
Move particles under 

Lorentz force 
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• Relativistic 3D e.m. PIC code TRISTAN-MP (Buneman 93, Spitkovsky 05, LS+ 13,14) 
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Internal dissipation in blazar jets
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Internal dissipation: magnetic reconnection?
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What is the long-term evolution of relativistic magnetic reconnection?



Dynamics and particle spectrum



Density

εB

(LS & Spitkovsky 14)
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Hierarchical reconnection

• The current sheet breaks into a series of secondary islands (e.g., Loureiro+ 07, Bhattacharjee+ 
09, Uzdensky+ 10, Huang & Bhattacharjee 12, Takamoto 13). 

• The field energy is transferred to the particles at the X-points, in between the magnetic islands.

• Localized regions exist at the X-points where E>B.

2D PIC simulation of σ=10 electron-positron reconnection
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• Inflow into the layer is non-relativistic, at vin ~ 0.1 c (Lyutikov & Uzdensky 03, Lyubarsky 05).

• Outflow from the X-points is ultra-relativistic, reaching the Alfven speed

Density

Inflows and outflows
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2D PIC simulation of σ=10 electron-positron reconnection



• In 3D, the in-plane tearing mode and the out-of-plane drift-kink mode coexist.
• The drift-kink mode is the fastest to grow, but the physics at late times is governed 
by the tearing mode, as in 2D.
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(LS & Spitkovsky 14)



The particle energy spectrum

•p=2

Time →

2D σ=10 electron-positron

Maxwellian

• At late times, the particle spectrum approaches a power law dn/dγ∝γ-p 

Time →

2D in-plane

2D out-plane

3D σ=10 electron-positron

• The max energy grows linearly with time, if the evolution is not artificially 
inhibited by the boundaries.
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The power-law slope

•p=4
•p=3

•p=1.5

•p=2

The power-law slope is harder for higher magnetizations.

γ  
(LS & Spitkovsky 14, 
see also Melzani+14, 
Guo+14,15, Werner+16)

2D electron-positron



Particle acceleration mechanisms
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The highest energy particles
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(LS & Spitkovsky 14)

Two acceleration phases: (1) at the X-point; (2) in between merging islands

 2D σ=10 electron-positron



Black circles: high-energy particles

(2) Fermi process in between islands

Time →

Solid: all particles
Dashed: high-energy particles

• The particles are 
accelerated by a Fermi-like 
process in between 
merging islands (Guo+14, 
Nalewajko+15).

• Island merging is 
essential to shift up the 
spectral cutoff energy.

Density

• In the Fermi process, 
the rich get richer. But 
how do they get rich in 
the first place?



• In cold plasmas, the particles are tied to field lines and they go through X-points.
• The particles are accelerated by the reconnection electric field at the X-points 
(Zenitani & Hoshino 01). The energy gain can vary, depending on where the particles 
interact with the sheet.
• The same physics operates at the main X-point and in secondary X-points.

(LS & 
Spitkovsky 14)

(1) Acceleration at X-points
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Plasmoids in relativistic reconnection



Plasmoids in reconnection layers
Density

Magnetic energy

Kinetic energy

Outflow momentum

(LS, Giannios & Petropoulou 16)
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Plasmoid space-time tracks
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We can follow individual 
plasmoids in space and time.

First they grow, then they go:

• First, they grow in the center 
at non-relativistic speeds.

• Then, they accelerate 
outwards approaching the 
Alfven speed ~ c.

(LS, Giannios & Petropoulou 16)

σ=10    L~1600 c/ωp     electron-positron
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Plasmoid fluid properties
Plasmoids fluid properties:

• they are nearly spherical, with 
Length/Width~1.5 (regardless of 
the plasmoid width w).

• they are over-dense by ~ a few 
with respect to the inflow region 
(regardless of w).

• εB~σ, corresponding to a 
magnetic field compressed by 
~√2 (regardless of w). 

• εkin~εB~σ → equipartition 
(regardless of w).

N/Nisl

Plasmoid width w [L]

σ=10 electron-positron

Length/Width

<Density>

<Magnetic energy>

<Kinetic energy>

(LS, Giannios & 
Petropoulou 16)
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Time [L/c]

σ=10 electron-positron

~0.1 c

First they grow, then they go
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• The plasmoid width w grows in the 
plasmoid rest-frame at a constant rate of 
~0.1 c (~ reconnection inflow speed), 
weakly dependent on the magnetization.

(LS, Giannios & Petropoulou 16)
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• Universal relation for the 
plasmoid acceleration:



Non-thermal particles in plasmoids
• The comoving particle spectrum of large islands 
is a power law, with the same slope as the overall 
spectrum from the layer (so, harder for higher σ).

Width →
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• The low-energy cutoff scales as ∝√σ, the high-
energy cutoff scales as ∝w, corresponding to a 
Larmor radius ~0.2 w (a confinement criterion).

σ=10 electron-positron
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+z: solid
−z: dotted

• Small islands show anisotropy along z 
(along the reconnection electric field). 
Large islands are nearly isotropic.

(LS, Giannios & Petropoulou 16)
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From microscoPIC scales to blazars
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Let us measure the system length L in units of the post-reconnection Larmor radius:

• At large L (L/r0,hot ≳ 300), the Larmor 
radius of the highest energy particles is a 
fixed fraction of the system length L 
(~0.03-0.05 L), regardless of L/r0,hot.

→ Hillas criterion of relativistic reconnection 

(LS, Giannios & Petropoulou 16)
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L/r0,hot

• The width of the biggest (“monster”) 
islands is a fixed fraction of the system 
length L (~0.1-0.2 L), regardless of L/r0,hot.

Relativistic reconnection is a self-similar 
process, in the limit L≫r0,hot:

σ=10 electron-positron



rL,max

⇠ 0.04L
rL,max

⇠ 0.2w
max

UHECRs from reconnection in blazars?
From PIC simulations of relativistic 
reconnection in blazars:

• the max energy particles have 
Larmor radius

EUHECR ⇠ 5⇥ 1018 Z �1�1B0tf,5 eV

• From the typical timescale tf ~ 105 s of blazar major flares,
   one can infer the size wmax of the largest plasmoids, and so rL,max.

• The highest energy ions will have (if the jet Doppler factor δ~10)



Alternatives?



Magnetized (σ>10-3) quasi-perp relativistic shocks are poor particle accelerators:

σ is large → particles slide along field lines
θ is large → particles cannot outrun the shock 

               unless v>c (“superluminal” shock)
→ Fermi acceleration is generally suppressed
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B0

UB/Ue=0.3-3

Efficiency=0.03-0.3

(LS, Petropoulou & Giannios 15)
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Only trans-relativistic (γ0~a few) magnetized (σ>0.03) quasi-parallel shocks satisfy the constraints.

Fermi 
process

UB/Ue=0.3-3

Efficiency=0.03-0.3

Internal shocks in relativistic jets
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εB

γ

(LS et al 13)

External shocks in GRBs
Particle acceleration via the Fermi process in self-generated Weibel turbulence, 
for initially unmagnetized (i.e., σ=0) or weakly magnetized flows.

→ Maximum proton Lorentz factor:

By scattering off the small-scale Weibel turbulence, the acceleration rate is slow: γ∝t1/2

(Plotnikov, Pelletier & 
Lemoine 12, LS et al 
13, Reville & Bell 14)



The flare spectrum below the GeV peak and 
the lack of X-ray detections require p<2.

(Striani et al. 11)

(Buehler et al. 12)

Doubling time of ~8 hrs, with peak photon flux 
~30 times larger than the average.

The Pevatron in our backyard
Lightcurve Spectrum

Flux decay of ~ 10 hrs is controlled by synchrotron cooling + GeV peak frequency
➔ PeV electrons radiating in ~ mG magnetic fields



Constraints: 

• Particle acceleration by E~B (energy gain and losses on Larmor radius scale).

• Particle acceleration on macroscopic scales ≫ skin depth. Evolution on ~ dynamical time.

• Few particles are accelerated (with hard spectrum) beyond the synchrotron burnoff limit.

The GeV flares in the Crab Nebula

vs
Plane-

parallel 
reconnection

Explosive 
reconnection

What process?

Where?

High-sigma 
regions → 
intermediate 
latitudes.
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Magnetization



Force-free magnetic field configurations
 X-point collapse 

ABC structures

Core-envelope flux tubes

Lundquist flux tubes

color: Bz

color: Bz

color: Bz

color: Bz

(Lyutikov, Sironi, 
Komissarov & 
Porth 16, submitted 
to a special issue 
of JPP)



Merger of magnetized flux ropes
force-free simulation 
at time=0, 2, 4, 6, 9

• Flux ropes are pushed together by hand, “eroding” the envelopes 
→ first episode of particle acceleration, dependent on the initial push.

out-of-plane field

γ

γ dn/dγ

p=2

γmax

(Lyutikov, LS, Komissarov & Porth 16)

• Then, parallel currents are 
exposed, and they attract 
explosively,  merging on a 
dynamical timescale → 
explosive particle acceleration.
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Mechanism of particle acceleration
 σin=42    L/σin1/2=62 c/ωp    kT/mc2=cold

out-of-plane field

E·B

γ

(Sironi+ 16, in prep)

• Most of the particles that will reach high 
energies are injected near the most violent 
phase of evolution.

• Particle injection happens in regions 
where E·B≠0, and particle acceleration is 
governed by the reconnection electric field.

• The highest energy particles are highly 
anisotropic (see also Cerutti+ 12, 13).



Dependence on the flow parameters

• For σin≳10, the power-law slope is hard: p≲2.
• The high energy cutoff grows linearly with the flux rope radius rj and with the 
magnetization σin → acceleration on dynamical (~rj) length scales.

• The reconnection rate is ~0.3 → E/B~0.3.
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Beyond the synchrotron burnoff
Synchrotron burnoff limit: 
balance of acceleration by E~B 
with synchrotron cooling gives
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Beyond the synchrotron burnoff

• Particles are accelerated in 
the (macroscopic) current 
sheet, where B is small, and 
they can be accelerated 
beyond the synchrotron 
burnoff limit. 
(see also Cerutti+ 12,13 for 
plane-parallel reconnection).

coolingno cooling
out-of-plane field

γ dn/dγ

γmax

out-of-plane field

γmax

γ dn/dγ

(Sironi+ 16, in prep)
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Summary
• Relativistic magnetic reconnection (σ≳1) is an efficient particle accelerator, in 
2D and 3D. It produces non-thermal particles, in the form of a power-law tail 
with slope between -4 and -1 (harder for higher magnetizations), and maximum 
energy growing linearly with time.

• Plasmoids generated in the reconnection layer are in rough energy 
equipartition between particle and magnetic energy. They grow in size near the 
center at a rate ~0.1 c, and then accelerate outwards up to a four-velocity ~√σ.

• “Monster” plasmoids of size ~0.2 L are generated once every ~2.5 L/c, their 
particle distribution is quasi-isotropic and they contain the highest energy 
particles, whose Larmor radius is ~0.04 L (Hillas criterion of relativistic 
reconnection). In blazar jets, reconnection can accelerate UHECRs.

• Explosive reconnection driven by large-scale stresses is fast (~ few dynamical 
times), efficient and can produce hard spectra, in both 2D and 3D, as required 
by the Crab Nebula GeV flares.


