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ubiguitous and
widespread in all

the galaxies
started to form when the
first stars started to form
and continued to form until
the present

Black Holes: Two Flavors

Stellar Supermassive
Black Holes ' Black Holes
£
2 E
= =
D] o
2
E -
o
GW151226
L GW150914 RGG118
0 2 4 6 g
lCﬁg(IVII;HJ/]VI(D )

centre of galaxies
ubiquitous in
sphe*roids

born from
seeds

forming
over a short interval
of time at cosmic
dawn

seed nature?

S50014+813

10 12

Tuesday, August 30, 16




THE BLACK HOLE DESERT

® s the desert inhabited by black holes which we still do not

detect?
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THE BLACK HOLE DESERT

® |sthere a genetic divide?

® s the desert consequent to the “migration” of seeds into the domain
of the giants?

Black Hole
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THE BLACK HOLE DESERT

® s the desert populated by transition objects, resulting from the clustering/
aggregation/accretion of stellar objects viewed as single building

blocks?
Supermassive
Black Hole
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the gravitational universe

a universe of binary black holes
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Desert
2
g LIGO z
= | | VIRGO||l =
= &
o .g
gg o,
E
o
GW151226
—L_ GW150914 1+813
0 P 4

log(Mpr/Mg )

Tuesday, August 30, 16




cosmic high noon
peak of star formation
and AGN activity
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GRB 090429B
@
z=9.4

redshift z
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black hole tracks across cosmic ages
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redshift z

LISA BLACK HOLES
THE ONLY PROBES OF SEEDS IN THE HIGH REDSHIFT UNIVERSE
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peering deep into the epoch of cosmic dawn & high noon
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® do we have EM evidence of binary black holes to anchor

our modeling of GW sources?

3C75

NGC6240

inventory of nearby interacting galaxies
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mOJor merger d|chotomy
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TACCONI+ 2013

Q1623-BX453 Q1623-BX599

Compact § J-Ho-H Merger/Disk

® HSTimages of main sequence star forming galaxies @ z=1-2 - CO3 -2 survey - with high
fraction of molecular gas 0.3-0.5 (0.08 for SFG @ z=0)

® (70%) rotationally supported massive discs + (20%)mergers
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DWARF GALAXIES with OPTICAL SIGNATURES OF
ACTIVE “LISA” BLACKHOLES

17
J114302.41+260818.9

4 8 9 12
J081145.29+232825.6 |J090222.76+141049.4 |J090613.75+561015.5 |J100935.66+265648.8

119
J152637.36+065941.6

23 28
J130457.86+362622.2 |J140510.4+114617

8.5<log M*<9.5 @ z<0.055 with a variety of Sersic indexes

dwarf as light as the Magellanic clouds host “nuclear black holes”
are they representing the z=0 replica of
the mini-halos forming at cosmic dawn?

REINES, GREENE, GEHA 2013

Tuesday, August 30, 16



DWARF GALAXIES with OPTICAL SIGNATURES OF
ACTIVE MASSIVE BLACK HOLES

4 8
J081145.29+232825.6 |J090222.76+141049.4

(a) Broad-line AGN candidates:

o
-

REINES, GREENE, GEHA 2013 1

o))

5<log M(BH)<6
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® Wil the black holes in these interacting galaxies (of many
diverse morphologies) descend over time into a common
orbit and coalesce shortly after or is there a delay?

® are there preferred site for rapid coalescence?

MC 2014, review
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THE GRAVITATIONAL WAVE DOMAIN
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® pblack hole dynamics in merging galaxies
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Begelman, Blandford & Rees. Nature, 1980

® major mergers of gas-free spherical galaxies
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l. PAIRING PHASE
DYNAMICAL FRICTION AGAINST STARS
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MC 1999
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l. END OF THE PAIRING PHASE
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HARDENING
THROUGH

SCATTERING
OFF
SINGLE
unbound
STARS

PLUNGING
FROM
NEARLY
RADIAL ORBITS
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Begelman, Blandford & Rees. Nature, 1980

II.LHARDENING PHASE
SLINGSHOT
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Diagram of the timescales vs BH separation

from Begelman, Blandford and Rees
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QUINLAN 1996,YU 2002,
SESANA & KHAN, 2015
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star’ s ejection
implies rapid
DEPLETION
OF THE
LOSS CONE

1[?0

10

r
(yr)

10
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THE LAST PARSEC PROBLEM

THE LAST PARSEC
PROBLEM

t, (loss cone
depleted) -

tgas = 10°yr /

/ (neglecting
loss cone )
depletion)}

10°? 1 100
r{pc)

MILOSAVLIJEVIC & MERRITT 2005

REFILLING OF THE LOSS-CONE
OCCUrs
ON THE TWO-BODY
RELAXATION TIMESCALE

Trelaxation X N/ In N

IN GALAXIES
two-body RELAXATION
TIMESCALE
LONGER
HUBBLE TIME
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PAIRING

GALAXIES ARE NOT “SPHERICAL”
BEING RELIC OF (major) MERGERS

.. a degree of triaxiality/rotation/counterotation
“solve the last parsec problem”
even in absence of two-body relaxation

VASILIEV+2015

Sesana & Khan 2015
Holley Bockelmann & Khan 2015

Vassiliev+2013, Khan & Holley Bockelmann 2013, Khan, Just & Merritt 2011
Khan+ 2012, Preto+ 2011,Berentzen+ 2009, Preto+ 2011, Berczik+ 2006
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VASILIEV+2015

1.0 | |
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® |oss cone in collisionless triaxial o
galaxies is far richer of low L stars Qﬂ
than in spherical galaxies

N
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® presence of chaotic orbits that
arise in non-spherical geometries

0.2
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® the axisymmetric case is halfway

. . | |
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° 77 = fraction of chaotic orbits

® orbits determined by L, Lcirc
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® mass in stars on chaotic orbits is in
general larger than the mass of the
black hole binary

® {0 the extent that mergersresultin
galaxy shapes that are slightly non
axisymmetric --> the final problem is
not a problem in most galaxies

® hardeningrates neverrich the “full
loss cone” regime

® coalescence times fall in the range
of 100 Myr (for very eccentric orbits)
-1 Gyr (for circular orbits) typically

VASILIEV+2015
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SWIFT COALESCENCE OF TWO SUPERMASSIVE BLACK HOLES
IN A COSMOLOGICAL MERGER

(gas poor)

Khan, Mayer, Ficconi+ 2016

y (kpe)

Argo cosmological simulation
galaxy group @ z=3.5

identification of the two main spirals
undergoing a major merger

gas fractions of 10% or less

first “abinitio” simulation of two
galaxies ending with the
coalescence of the 100 million-sun
black holes
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gas dissipation is instrumental before the
merger in creating a high central stellar
density, result of gas inflows in the inner 500
pc due to cosmological gas inflows and
accretion prior to mergers

@ 1=20 Myrs the merger remnant is gas poor owing
to gas consumption. The black holes are
surrounded by dense stellar cusps (central regions
are devoid of DM)

dynamical friction by stars (and gas in the early
stages) controls the dynamics of the two black
holes all the way down to the hardening phase

the hard binary hardens by slingshot

T ‘ L L ‘ T 1T ‘ L ‘ T 17T ‘ L
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10 3 — Major merger
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0.

® theremnantis triaxial

® plack holes coalesce swiftly

® IiNnC

lusion of PN terms is important

Khan, Mayer, Ficconi+2016
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t
log (—> t\ THE LONG JOURNEY TRAVELLED BY MASSIVE
. BLACK HOLES IN MAJOR MERGERS

Il. BINARY

1. GW
HUBBLE TIME ARDENING . PAIRING
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| T | | MERGER
of
HOST
| | P SR - GALAXIES
' : on

100 kpc scales

micro-pc

1-10 pc I-10 kpc

BLACK HOLE SEPARATION
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.
kA RS - |

Merging galaxies at high redshifts are
expected to contain the largest

concentrations -
of cool, dense gas. :
This inevitable abundance of gas ’.
o motivatead

the inquiry into
the role of gas dynamics as an alternative
INn the process of
black hole coalescence
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major mergers of gas rich galaxies

on 100 kpc scales

Marta’ s talk

ab initio simulations of major simulations of nuclear
mergers of disc galaxies

gas discs
on 500 pc scales

simulations
of colliding gaseous
galactic discs

50% gas fraction

multi-phase medium

star formation
stellar feedback

on 500 pc scales -

log Column Density [My, pc?]

5 50% gas fraction
|
N
A
R
Y «loel b
. single/ two-phase medium
O
R| simulations of massive isolated
« M| disc galaxies (no bulge)
o A
1mi\ T
10? O - -
“ I'N

multi-phosé cmedium
high gas fraction >50%

star formation
AGN feedback

MC 2014, review
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FORMATION OF A MASSIVE NUCLEAR DISC @ |ast pericentre
of billion solar masses
200-300 pc insize 60 pc height

DENSITY MAP
OF THE GASEQOUS
DISCS DURING THE

FINAL
prograde,
coplanar

MERGER

ASYMMETRIC
SHOKS DUETO
TURBULENCE

TIDAL TORQUES ARE
REDISTRIBUTING THE
ANGULAR
MOMENTUM OF THE
TWO INTERACTING
DISCS

t=5.2500 Gyr

"3

MAYER, MC+ 2007, AMR SIMULATION BY CHAPON+ 201 |
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® gas dynamical friction
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rapid formation of an eccentric binary
few million years after the formation of the disc
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DEDICATED HIGH-RESOLUTION SIMULATIONS OF THE BLACK HOLE EVOLUTION IN
ROTATIONALLY SUPPORTED NUCLEAR DISCS MESTEL PROFILE

log Surface Density [Mg, po]

v [pe]

-100 0 100
= [pe]

the disc and BH corotate counterclockwise
the drag force is mostly acting at peri-center
where the wake lags behind

THE UNDERLYING ROTATING GASEOUS
BACKGROUND FORCES THE SECONDARY
BLACK HOLE TO CO-ROTATE WITH THE DISC
MEMORY LOSS OF THE INITIAL ECCENTRICITY

v [pe]

DOTTI, MC+2006,2007,2009a,b
PEREGO+ 2009

MC & DOTTI, 201 |

= [pe]
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® (fter circularization the
black hole has reduced
its velocity relative to the
underling medium

® the black hole dynamics
is reminiscent of the type
| planet migration

® disc mass dominate over
the mass of the
secondary black hole

Maisc > MBH 2

tmi ration
5 ~2rInAh
tdyn—friction FIACCONI, MC+ 2013
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® Dblack hole dynamics in massive circum-nuclear discs

® switch forcefully cooling (only) in an unstable Mestel disc
(M(disc)=100 million suns; M(BH, primary)=10 million suns, g(mass ratio)=0.1)

® formation of massive clumps

1
(o)}

]
()

log Column Density [M,, pc]

FIACCONI,MC+ 2015
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® clump distribution andssize ( “clumpy 1” - cooling time 0.2 Myr, “clumpy 2” 2 Myr )

TTTI T TTTTTT T |||||||| T |||||||| T |||||||| T TTTT 100 :||||||| T |||||||| |8|||||||| T TTTITT T |||||||| T ||||£
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» | o 10 | -
2 10 & F :
3 10-8 a . i
> - - 1w - .
© ook ! ] - L
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Mcl [MO] Mcl [MO]

® clumps migrate to the centre

® the black hole can tidally
disrupt a clump

log Column Density [M,, pc?]

® the black hole can be
“captured” by the clump
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® very massive large scale gas disc simulating disc galaxies @ high z with

M(disc)=10 billion suns and gas fraction of 0.5: phase of violent disc
instability

® including black hole accretion and AGN feedback the delay and off-
plane scattering can be even more significant

y [kpc]

y [kpcl]
y [kpcl]

TAMBURELLO+ 2016
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® extreme show case: disc angular momenta anti-parallel to the orbital angular
momentum

® shocks become sites of intense star formation and stellar feedback alters the
thermal and dynamical state of the gas

® only few clumps form with mass comparable to the black hole mass, so the orbit is
perturbed but not as stochastic as in the previous models (due to the geometry of
the collision that confines star formation along the oblique shock)

® plack hole dynamics not strongly affected by the recipe of feedback

100

.........................
°* LIS

10°
4
10* 4~ | . .
I—|
110° ¢
< -
107
10! T
z (pe)

LUPI+ 2015 x(pc)
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® thermal feed back with delayed SN explosions leaves a inner disc and no
main disc structures around

® thermal feedback with prompt SN explosions leaves an outer counter-
rotating ring + an inner co-rotating ring

000730 =20 —10 0 10 20 30 40

X (pe)
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® plast wave feed back, modeling the expansion of supernova driven
bubbles, leave the black holes in the midst of a triaxial gas distribution with
a denser central core

® need of recipes “calibrated” - matching observations with simulations

® caution - not faithful modeling of the feedback implies unphysical results

10°

7 (pe)

102

1 1
=50 050100
v (pe)

—130 —100
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® foCcus Now on a binary surrounded by a circum-binary
disc
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GAP O P E N l N G f Color qued fSurfc:ce DeJ[r)si’[yII
ace-on view of a geometrically
| | P E | | M |G RAT' O N thin self-gravitating gas disc

® Tidal torques from the binary drive gas
outward clearing a hollow cavity. Viscous
torques in the circum-binary disc allow gas
to flow inward and refill the cavity

>

® Balance of tidal and viscous torques
determine the location of the inner edge of
the circum-binary disc

® Cavity has asize “twice the orbital
separation”

® (Gas enters the cavity through streams which
feeds persistent mini-discs

log density

SPH 3D simulations
Roedig, Sesana, MC +. 2011
Roedig, Sesana + 2012
Farris+ 2014
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® constraining the accretion
rate for AGN samples

® Dotti+2015 find that any
binary formed at z~2 can
coalesce within current
timee

= 1/ G MBHBTGAP
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the beauty & strength of LISA science
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the gravitational universe

a universe of binary black holes
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CONCLUSIONS

the last parsec problem resolved (1 Gyr)
gas-rich mergers are far more complex to model

gas-fraction/amount of molecular gas/star formation/
stellar feedback/AGN feedback make black hole
dynamics far more complex to model

state of the art numerical simulations are just in their
INfancy - need to explore a wide parameter space

EM observations of DUAL- sub-pc binary AGN are in their
Infancy

EM observations of galaxies at high redshift will better
anchor our modeling of galaxy mergers

Tuesday, August 30, 16



