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..and why they’re limits.
• Data problems: 

Understanding your instrument (the pulsar) 

• Astrophysical problems: 
Current limits getting interesting/depressing 

• Computational problems: 
High dimensionality 
Big data sets



Pulsar Timing

A single observation gives you an integrated pulse as a function of frequency. 
Standard timing practice - Fit a template to that pulse to determine its arrival time and uncertainty.

Generative pulsar timing analysis 7
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Figure 2. Graphical representation of the a single likelihood evaluation in GPTA for a given set of timing model parameters ✏, and profile parameters ✓. The
solid red line shows the data, a pulse profile with additional white noise. The vertical line at x = 0 represents the SAT present in the tim file that corresponds to
that pulse, transformed to the solar system barycenter. Values on the x axis are the separation from this BAT in seconds. Note that the exact value of the SAT
is not important, it is simply used as a flagpost in parameter space against which to define the model TOA used in GPTA. A model TOA is generated by using
a set of timing model parameters ✏ to obtain a residual �t relative to the existing BAT. The model profile (blue dashed line) can then be evaluated at this model
TOA. In this way the timing model can be used to generate model TOAs, and the model pulse profile can be evaluated concurrently.

seconds for each TOA, with an amplitude of 3.16⇥10�5 in arbitrary
units, each of which is sampled in 31 bins. We then add Gaussian
noise to each profile that is uncorrelated between bins with an rms
such that the integrated signal–to–noise in each profile is ⇠ 85. We
form the TOAs by fitting the injected model Gaussian to each pro-
file to obtain a maximum likelihood and associated 1� uncertainty,
which results in an average TOA error of 3.5 ⇥ 10�6 seconds. We
then perform the analysis using GPTA using the profile data, and
with TempoNest using the TOAs in order to compare the result. In
this instance we would expect both methods to be completely con-
sistent as the TOA values and uncertainties estimated by fitting the
Gaussian profile to the simulated folded data will be accounted for
correctly in the TempoNest analysis.

Fig 3 shows the one dimensional marginalised posteriors for
the timing model in simulated dataset 1 using GPTA (green) and
using TempoNest (red). Values on the x-axes are given in terms of
the 1� uncertainties returned by the TempoNest analysis, with the
injected parameter value at 0 in all cases. Table 2 lists the mean
posterior values and associated 1� uncertainties for all model pa-
rameters, including the profile parameters returned by the GPTA
analysis. For all timing model parameters the two methods are com-
pletely consistent, both in terms of the parameter estimates and the
uncertainties as expected.

8.2 Simulation 2

We now consider the case where there is significant red timing
noise present in the data. Here we use a more complex pulse pro-
file generated using the lowest 3 shapelet coe�cients described in
Section 3 which we show in Fig. 4 (black line). In order to produce
constraints on the profile we store the value of the profile at each of
the the 31 sampled points from every likelihood calculation and use
these to construct posterior distributions for the value of the profile

at those points. The 1� confidence intervals returned by this analy-
sis are also shown in Fig. 4, however for clarity we have increased
their size by a factor of 100. The profile returned by the GPTA anal-
ysis is consistent within Gaussian statistics with the injected profile
at all points. We note that, while our model for the pulse profile is
generated using the same set of basis functions as we then fit for, as
shapelets form a complete set any profile can be reproduced using
the shapelet formalism, and so this has no impact on the generality
of the result.

As with Simulation 1 we construct a set of TOAs using the
injected pulse profile and compare our analysis using GPTA to that
of using TempoNest on the TOAs. Table 2 lists the mean posterior
values and associated 1� uncertainties for all timing model and
stochastic parameters using these two methods, and in Fig. 5 we
show the one and two-dimensional marginalised posteriors for the
spectral index and amplitude of the injected red noise signal. As in
Simulation 1, our assumptions about the noise in the pulse profiles
are correct in both cases, and so we find that our results for all
parameters are consistent for the two methods.

8.3 Simulation 3

For the final simulation we consider the case where there are multi-
ple observing frequencies in the dataset, and the pulse profile shows
evolution from one frequency to the next. We use di↵erent model
profiles for each frequency where the fractional di↵erence between
is shown in Fig. 6 (black line), alternating between them for each
TOA. Such division is completely arbitrary however, we could have
just as easily considered evolution in time, and used the di↵erent
pulse profiles for the first and second half of the dataset.

Table 2 lists the mean posterior values and associated 1� un-
certainties for the timing model parameters when fitting for either
an independent profile model for each frequency, or for a single
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Figure 5. The highest S/N epoch for J1713+0747 (left), J1744�1134 (middle) and J1909�3744 (right). In each case we show the profile at five frequencies
spread evenly through the band. While no profile evolution across the band is visible by eye, we estimate its properties to high significance in Section 6.

MJDs 56055, 56110,and 56160, which were also measured using
the pulsed calibration scheme. In some cases, these measurements
are less precise than can be measured by the ToAs, and so we in-
clude as free parameters in our analysis o↵sets corresponding to the
jumps at MJDs 55319, 56055, 56110,and 56160.

6 RESULTS

In the following three subsections we describe the results obtained
when using our wide-band profile domain timing technique on the
three 10 cm PDFB4 data sets described in Section 5. In Section 6.1
we compare the two models for profile evolution described in Sec-
tion 3.4 which we denote as models:

(E1) A linear change in the shapelet amplitudes that describe the

c� 0000 RAS, MNRAS 000, 000–000



Pulsar Timing

End up with a list of arrival times. 
Fit a model to those arrival times that describes the rotation of the pulsar. 
Unambiguously account for every rotation of a pulsar over years.



Pulsars are very precise clocks
E.g. PSR J0437-4715 

At 00:00 UT Jan 18 2011 

Period = 5.7574519420243 ms 
+/- 0.0000000000001 ms 

Last digit changes by 1  
every half hour 



Pulsars are very precise clocks
E.g. PSR J0437-4715 

At 00:00 UT Jan 18 2011 

Period = 5.7574519420243 ms 
+/- 0.0000000000001 ms 

Last digit changes by 1  
every half hour 

Can use this precision to  do incredible science 

Pulsar is a binary: 
Orbital radius about  
1.44 x the sun’s radius 

(~1011 cm) 

Extremely circular: 
Difference between the semi-major  
and semi-minor axes measured  
through timing to be: 
  18.59 +/- 0.01 cm



Millisecond Pulsars

Supernova produces  
neutron star

Companion red giant  
transfers matter to 

 neutron star

Neutron star ‘spun up’  
to millsecond periods

Figs: NRAO



Millisecond Pulsars

Compared to slow pulsars: 

Smaller magnetic fields 
Smaller period derivative 

-> More Stable rotator

Lots of binary MSPs 
Not many binary slow pulsars 



Using Pulsars to detect Gravitational Waves

• Change in path length from GWs:  

• ~ few hundred meters = few tens of ns

• Also far away ~ 1kpc = 3x1019 meters 



Using Pulsars to detect Gravitational Waves

�Sensitive to nHz 
GWs 

�Earth-pulsar 
distance changed 

�See deviation in 
arrival time of pulse 

Pulsar Timing • Analogy to LIGO : 

• pulsars are arms of detector 



Using Pulsars to detect Gravitational Waves

• Principle source - Merging 
supermassive black hole binaries 

• Expect a background of low 
amplitude sources 

• Bright single sources 

• Two components to signal: 

• Pulsar Term 

• Earth Term

�Sensitive to nHz 
GWs 

�Earth-pulsar 
distance changed 

�See deviation in 
arrival time of pulse 

Pulsar Timing 



Plane Wave Expansion

Earth

Pulsar

GW Source

Wavefront 1

Wavefront 2

• Perturbation at the pulsar at  a time t_p 

• Perturbation at the Earth at a time t_e 

• Measure the difference between the two:

 

 

 
 

 

 

 

Wavefront 1

Wavefront 2



Delay is purely geometric
 

L~1 kpc, can see frequency evolution over very large time scales.
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The GW Signal

So: 
Have a timing model for a pulsar. 
Subtract predicted arrival times of pulses from observed -> get residuals

If timing model is enough, residuals basically white: GWs induce red timing noise signal in residuals:
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The GW Signal

But real data can have 
plenty going on  
without needing to 
invoke GWs :(



Image credit: George Hobbs

Lots of things can look like GWs: 

Angular correlation between pulsars 
allows us to discriminate between: 

(for example) 

Intrinsic Timing Noise 
(Uncorrelated between pulsars) 

The GW Signal



Image credit: George Hobbs

Lots of things can look like GWs: 

Angular correlation between pulsars 
allows us to discriminate between: 

(for example) 

Intrinsic Timing Noise 
(Uncorrelated between pulsars) 

Errors in time standard 
(Monopole correlation)

The GW Signal



Image credit: George Hobbs

Lots of things can look like GWs: 

Angular correlation between pulsars 
allows us to discriminate between: 

(for example) 

Intrinsic Timing Noise 
(Uncorrelated between pulsars) 

Errors in time standard 
(Monopole correlation) 

Errors in planet masses 
(Dipole correlation) 

The GW Signal



Image credit: George Hobbs

Lots of things can look like GWs: 

Angular correlation between pulsars 
allows us to discriminate between: 

(for example) 

Intrinsic Timing Noise 
(Uncorrelated between pulsars) 

Errors in time standard 
(Monopole correlation) 

Errors in planet masses 
(Dipole correlation) 

And Gravitational Waves! 
(Quadrupole correlation)

The GW Signal



For an isotropic background the correlation has an analytic solution –  
depends on angular separation of pulsars on the sky:

The Hellings-Downs Curve

Smoking Gun of a real GW detection.
Simulated data 



21

IPTA 



22Some Predictions

20 pulsars 
100ns white residuals 
Detection in 5 years (e.g. Jenet et. al. 2004) 

Current IPTA data set:  
40 pulsars 
20 years of data 
Some < 100ns 
….. So wheres the detection?
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Data Problems



This is the crab  
pulsar     ! 

Radiation from the  
pulsar creates shocks 

That are felt for  
~ 10 light years

Fig: NASA

are very precise clocksSome
Pulsars



Crab super nova seen 
from  Earth in 1054 

Pulsar rotates ~ 30 times  
a second. 

Pulsar wind causes 
period of rotation to 
slow by 38ns per day

are very precise clocksSome
Pulsars



But Crab not a stable rotator: 

Period of rotation has significant 
variation with time 

No good for GW science.

2 Lyne et al.

Table 1. Measured braking indices for young pulsars

PSR n Reference

B0531+21(Crab) 2.51(1) Lyne et al. (1993)
B0540−69 2.14(1) Livingstone et al. (2007)
B0833−45(Vela) 1.4(2) Lyne et al. (1996)
J1119−6127 2.684(2) Weltevrede et al. (2011)
B1509−58 2.839(1) Livingstone et al. (2007)
J1734−3333 0.9(2) Espinoza et al. (2011b)
J1833−1034 1.857(1) Roy et al. (2012)
J1846−0258 2.65(1) Livingstone et al. (2007)

haviour and have their origin in the neutron star interior
(Espinoza et al. 2011c).

Because of these effects, values of braking index have
been reliably established for only eight pulsars. For the Crab
pulsar, ν̈ has been measured between glitches (Lyne et al.
1993), leading to an observed value nobs = 2.51(1), signif-
icantly less than the value of n = 3 expected for braking
by magnetic dipole radiation. The same is true for all the
other seven pulsars (Table 1). These results indicate that
the physical process causing the slowdown is not just simple
dipolar electromagnetic radiation.

In this paper we report on the measurement and anal-
ysis of the rotation rate of the Crab pulsar from 1968 to
2013. This 45-year time-baseline amounts to about 5% of
the pulsar lifetime and allows the spin-down of the Crab
pulsar to be described over a period which includes many
glitches and provides more details of the cumulative ef-
fect that they have on the long-term spin-down (Lyne et al.
1993; Smith & Jordan 2003). Elsewhere, the same data have
been used to examine the statistics and physical details of
the glitches (Espinoza et al. 2014) and to study the evolu-
tion of the radio pulse emission over this time (Lyne et al.
2013) to enable a comprehensive picture of the evolution of
the pulsar.

2 OBSERVATIONS AND BASIC ANALYSIS

The rotation of the Crab pulsar has been monitored by daily
observations at Jodrell Bank Observatory since 1984, mainly
using the 13-m radio telescope at 610 MHz (Lyne et al. 1988,
1993). Regular observations with the 76-m Lovell telescope
at around 1400-1700 MHz, designed to monitor any changes
in dispersion measure, also contribute to the dataset.

These data have been supplemented with earlier ob-
servations taken at Arecibo (Gullahorn et al. 1977) and in
the optical at Princeton (Groth 1975) and Hamburg (Lohsen
1981). There are no observations available between February
1979 and February 1982, this being the only significant gap
with no data. There are in total appproximately 11,000 times
of arrival (TOAs) and together the measurements comprise
a record of the rotation of the pulsar over a total of 45 years
from November 1968 to December 2013.

In order to study the long-term rotational history of
the pulsar, we have used standard procedures to reduce the
TOAs to the barycentre of the Solar System. We have then
fitted values of the rotation frequency ν and its first two
derivatives ν̇ and ν̈ over time spans of approximately 100
days. Such analyses were repeated with the central reference
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Figure 1. The spin-frequency history of the Crab pulsar over
45 years. (a) The observed spin-frequency ν determined from fits
to 100-day data sets every 50 days, showing the monotonic slow-
down of the pulsar. (b), (c) and (d) The frequency residuals δν

after fitting to the values in (a) simple slow-down models involv-
ing frequency and respectively one, two and three spin-frequency
derivatives in the Taylor Series of equation (5). The fitted values
of ν0, ν̇0, ν̈0 and

...
ν 0 for (d) are given in Table 2.

time advancing by typically 50 days between analyses. Close
to glitches, the time spans were adjusted in such a way that
no analysis was performed over a glitch, so that one analysis
ended and another started close to the epoch of the glitch.

These time sequences of rotational frequencies and first
derivatives provide the main forms of the data that we use
to study the long-term behaviour of the pulsar in this pa-
per. Figs. 1a and 2a illustrate the evolution of the rotational
frequency ν(t) and slowdown rate ν̇(t) over the 45 years.
The rotational slowdown of the pulsar is evident in Fig. 1a,
falling by about 0.5 Hz during this time. The slowdown rate
(Fig. 2a) also shows a general reduction in magnitude with
time, but there are also considerable long-term effects re-
sulting from glitches, which we investigate further in a later
section.

Following convention, it is instructive to characterise
the variation in rotation frequency with time as a Taylor
series of derivatives of the form:

ν(t) = ν0+ν̇0(t−t0)+
1
2
ν̈0(t−t0)

2+
1
6

...
ν 0 (t−t0)t

3+δν(t).(5)

c⃝ 2014 RAS, MNRAS 000, 1–9

Fig: Lyne et al 2014

are rubbish clocksMost
Pulsars



are rubbish clocksMost
Pulsars

The SKA will find about 15 000 new pulsars. 

Will find a host of high precision MSPs. 

Will significantly improve timing precision on many of the  
ones we have already.



28Data Challenges

<- 100 ns white noise (as per predictions)
Residuals:  
Subtract expected time of  
arrival from actual time. 
<- 100ns white noise 

Actual data: 
J0437-4715 
(one of the better pulsars) 

Data challenges 
Residuals:  
Subtract expected time of  
arrival from actual time. 
<- 100ns white noise 

Actual data: 
J0437-4715 
(one of the better pulsars) 

Data challenges 

Actual Data ->
J0437-4715  
(That great one i mentioned  
earlier…)



29Data Challenges

In this case noise mostly due to  
the interstellar medium. 

Data challenges 

Noise mostly due to the interstellar medium 
Frequency dependent  (goes as 1/f^2) 

Data challenges 

Noise mostly due to the interstellar medium 
Frequency dependent  (goes as 1/f^2) Dependent on observing 

frequency

Data challenges 

Noise mostly due to the interstellar medium 
Frequency dependent  (goes as 1/f^2) 

Data challenges 

Noise mostly due to the interstellar medium 
Frequency dependent  (goes as 1/f^2) 



30Data Challenges
Model signal statistically - 
Scale with observing frequency 

Data challenges 
Noise mostly due to the interstellar medium 
Frequency dependent  (goes as 1/f^2) 

50cm 

20cm 

10cm 

Data challenges 
Noise mostly due to the interstellar medium 
Frequency dependent  (goes as 1/f^2) 

50cm 

20cm 

10cm 



31Data Challenges
But the signal isn’t stationary… 

Data challenges 

Void in the ISM 

Over density in the ISM 

Not Time stationary 

Data challenges 

Void in the ISM 

Over density in the ISM 

Not Time stationary 

Over density in the ISM 

Void in the ISM 
Figs: Lentati et al 2016



Data Challenges

So just increase the bandwidth right? 

Massive increase over the last few years 
Further increases to come 

~4GHz simultaneous bandwidth for 
up coming systems. 



Data Challenges
More than just DM though: 
Scattering, ‘frequency-dependent DM’ 

Can really hurt: 

PPTA Limits for PSR J1909-3744: 
10cm only : 1e-15 
10+20cm:    9e-16 
10+20+50:   2e-15 

Fig: Lentati et al 2016



Data Challenges
Better modelling can make a huge difference (Lentati et al 2016) 
60% increase in sensitivity compared to ‘standard’ models 

With the next IPTA data set can do even better (> factors of 2) 

Fig: Lentati et al 2016



35Data ChallengesData challenges 
Intrinsic High Frequency 
in arrival times 
 
Known as ‘Jitter’ 
 
Better telescopes wont help 
 
Some pulsars already at limit 

Shannon et al 2014 

Intrinsic high frequency variation  
in arrival time of pulses 

Better telescopes won’t help. 

Already at the limit for some pulsars. 



36Data Challenges
Intrinsic high frequency variation  
in arrival time of pulses 

Better telescopes won’t help. 

Already at the limit for some pulsars. 

Not necessarily Gaussian either. 

Data challenges 
Intrinsic High Frequency  
variation in arrival times 
 
Known as ‘Jitter’ 
 
Better telescopes wont help 
 
Some pulsars already at limit 
 
 
Not necessarily Gaussian 

Lentati et al 2014 
Fig: Lentati et al 2015



37Data Challenges
Intrinsic low frequency variation 
in the arrival times (like Crab) - known as Timing Noise 

Either from magnetosphere or core… 
Origins not understood very well. 

Stochastic process as with DM - but in one  pulsar 
it can look just like gravitational waves (below). 

Data challenges 
Finally, Intrinsic Low Frequency  
variation in arrival times 
 
Known as ‘Timing Noise’ 
 
Either from magnetosphere, 
or core.. Origins mostly unknown 
 
Stochastic Process as with DM 
 
Individually can look just like 
Gravitational Waves 

Data challenges 
Finally, Intrinsic Low Frequency  
variation in arrival times 
 
Known as ‘Timing Noise’ 
 
Either from magnetosphere, 
or core.. Origins mostly unknown 
 
Stochastic Process as with DM 
 
Individually can look just like 
Gravitational Waves 



38Phase-coherent timing of the Vela pulsar 3

filterbank and digital-autocorrelation spectrometers; these
observations are described in detail in Wang et al. (2000) and
Yu et al. (2013). Most recently, the pulsar has been observed
with digital polyphase filterbank spectrometers as part of
a programme to monitor pulsars of interest to the Fermi

gamma-ray observatory (Weltevrede et al. 2010). These ob-
servations have monthly cadence with a central observing
frequency close to 1.4 GHz and semi-annual cadence with
a dual-band system capable of observing simultaneously at
central frequencies of 0.73 and 3.0 GHz.

The primary data in this analysis are TOAs, formed
by correlating observations that have been averaged in fre-
quency, time and (where recorded) polarisation with a tem-
plate, using the commonly applied Fourier phase gradient
method, described in Taylor (1992), and implemented in
the pulsar analysis code psrchive (Hotan, van Straten &
Manchester 2004). Templates were produced individually
for each backend/observing-band combination using an an-
alytic model fitted to the average profile from that combina-
tion. O↵sets between the backends were included in the tim-
ing model, as discussed in Section 3. The cross-correlation
method assumes that the data can be described by the tem-
plate and additive white noise. For our observations, this
is not the case. Distortions of the pulse profile, especially
prevalent in older observations, are introduced both by the
high flux density (in excess of system equivalent flux den-
sity) of the pulsar, and the large dispersion sweep of the
pulsar relative to the pulse phase and frequency resolution
of the observations.

Saturation of the amplifiers, other non-linear e↵ects in
the receiver and downconversion chain, and low-bit digiti-
sation can lead to artefacts in the pulse profile, such as
apparent negative flux density on the leading and trailing
edges of the pulse (Jenet et al. 1998). Older observations
were recorded with analogue-filterbank spectrometers with
single-bit digitisers and were especially susceptible to these
artefacts. Additionally, the pulse profile can be artificially
broadened if the dispersive delay across an individual chan-
nel bandwidth is larger than the pulse-phase resolution of
the observation. Given the relatively narrow pulse (2.1 ms),
and relatively high dispersion measure (68 pc cm�3), older
observations conducted with wide channels at low frequency
show this type of broadening. Even in more recent observa-
tions where instrumental e↵ects are minimised, stochasticity
in the pulse shape introduces additional timing error (re-
ferred to as pulse jitter, Cordes & Downs 1985) that limits
the timing precision of the observations. The e↵ects of all of
these distortions are secondary to TOA variations induced
by timing noise and glitch events. It is however necessary to
account for these e↵ects in the analysis, in particular when
modelling transient glitch components in our sparsely sam-
pled data set. While we do not account for them while mea-
suring TOAs (Lentati & Shannon 2015), we account for their
e↵ect in the pulsar timing model, as discussed in the next
section.

3 TIMING ANALYSIS

The presence of strong timing noise and glitch events make it
di�cult to produce phase-connected solutions over long data
spans for young, energetic pulsars like the Vela pulsar. As

Figure 1. Residual arrival times for maximum-likelihood
models of the Vela pulsar, measured in units of time �t
and cycles of phase �P . The stars show the epochs of the
glitches. a: Only fitting for the spin frequency and frequency
derivative. b. Fitting for the glitches but assuming power-
law noise. c: Modelled glitch signal from solution presented
in panel b. d: Whitened residuals for maximum-likelihood
solution. e: Dispersion measure variations for the maximum-
likelihood solution

::::
(solid

::::
line)

:
.
:::
The

:::::::
dashed

:::
line

::::::
shows

:::
the

::
1�

:::::::::::
uncertainties

:::
on

:::
the

:::::::::
realisation.

the data spans increase, the amplitude of timing-noise signal
increases rapidly (with the timing noise having a power spec-
tral density Pr(f) / f�5±2 across the population, Shannon
& Cordes 2010), and relative to a spin period and period
derivative at some fiducial epoch, the arrival times diverge.
Even if an initial phase-connected solution exists, it typi-
cally has hitherto been di�cult to fit the solution because

c� 2015 RAS, MNRAS 000, 1–10

Data Challenges

Timing Noise from the core: 

<- Vela (Young slow pulsar) 

Glitches - sudden changes in rotation rate 
Accompanied (in this case)by long  
(~1000 day) decays 

Maybe associated with the transfer of  
angular momentum between the superfluid  
interior and solid crust of the neutron star. 

Common in young pulsars 
But two glitches found in millisecond pulsars 

Fig: Shannon et al 2016



39
Data Challenges

Sounds like bad news? 
Glitches are not so hard. 
Put it in the model, decreases long term sensitivity, but at least somewhat deterministic. 

Glitch in the MSP 
J0613 
McKee et al 2016 
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Data Challenges

Timing Noise from the magnetosphere: 
Less extreme:  Switching to different states 

Observe change in pulse shape: 
Rate of energy loss is different 
different spin down rate 

Figure 3:

17

Figure 4:

18

Figs: Lyne et al 2010



41
Data Challenges

But: 
Profile change can lead to ‘timing noise’ 
in the arrival times due to mismatch  
between template and profile data. 

<- Simulation 

Change in pulse shape lead to observed 
timing noise when comparing profile 
to stationary model. 

Black curve = signal from GWs at current 
upper limit. 

Red = residual induces from < 1% change 
in profile shape 

Profile Stochasticity in PSR J1909�3744 3
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Figure 2. (Top) Black line - Simulated residuals due to a GW signal from an isotropic stochastic background with an amplitude of 1 ⇥ 10�15, consistent with
the most stringent 95% upper limits set by Shannon et al (2015). TOAs were simulated using the highest signal to noise profile in the PSR J1909�3744 dataset
used in Section 6, resulting in uncertainties of 20ns for each observation. Red line - Simuated residuals induced by the passage of an additional Gaussian
component to the profile data (see bottom panels), not included in the template at the time of forming the TOA, with an amplitude of 0.5% that of the observed
profile. The two signals are of comparable amplitude, implying that any unmodelled profile variation larger than this will quickly dominate over a GW signal
in the TOAs. (Bottom) 3 examples of the additional Gaussian component at di↵erent positions in the main profile, and residuals from the profile fit.

in the arrival time of the deterministic profile – as well as shape
variation that could be of instrumental, or astrophyical origin. As
such we will include below an overview of the basic framework,
before providing details on the modifications required to incorpo-
rate profile stochasticity.

2.1 Shapelets

A thorough description of the Shapelet formalism can be found in
Refregier (2003), with astronomical uses being described in e.g,
Kelly & McKay (2004); Lentati et al. (2013); Refregier & Bacon
(2003). Here we give only an outline to aid later discussion.

Shapelets are described by a set of dimensionless basis func-
tions, which in one dimension can be written as:
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h
2nn!
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xp
2
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exp

 
� x2

2

!
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where n is a non-negative integer, and Hn is the Hermite polyno-
mial of order n. Therefore the lowest order shapelet is given by a
standard Gaussian (H0(x) = 1), with higher order terms represented
by a Gaussian multiplied by the relevant polynomial.

These are then modified by a scale factor ⇤ which is a free
parameter to be fitted for, in order to construct dimensional basis
functions:

Bn(x;⇤) ⌘ ⇤�1/2�n(⇤�1 x). (2)

These basis functions are orthonormal, i.e:
Z 1

�1
dx Bn(x;⇤)Bm(x;⇤) = �nm, (3)

where �nm is the Kronecker delta, so that we can represent a func-
tion s(x) as the sum:

s(x, ⇣,⇤) =
nmaxX

n=0

⇣nBn(x;⇤), (4)

where ⇣n are the shapelet amplitudes, and nmax the number of
shapelet basis vectors included in the model.

In our analysis of pulsar timing data, we form a single profile
shape, which will then be scaled from epoch to epoch. We therefore
redefine Eq. 4, such that we have a single global amplitude A, and
nmax � 1 parameters ⇣n which are the amplitudes for the shapelet
components that have n > 0. These therefore represent the relative
contribution to the overall profile shape, relative to the zeroth-order
term, which we take to have an amplitude of 1. Written in this way
Eq. 4 becomes:

s(x, A, ⇣,⇤) = A
nmaxX

n=0

⇣nBn(x;⇤). (5)

Finally, the total integrated flux in the model profile, Ftot, is
given by

c� 0000 RAS, MNRAS 000, 000–000

Fig: Lentati & Shannon 2015
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Data Challenges

Time-correlated profile change seen in young pulsars a lot 
Recently seen in a millisecond pulsar too. 
The shift in the residuals isn’t an actual shift.  Just mismatch between 
template and data. (Shannon et al 2016, Liu et al 2015) 
 

Fig: Shannon et al 2016



43
Data Challenges

Different approach: Profile domain timing 
Don’t make time of arrivals.  
Simultaneously estimate model for profile and pulsar timing parameters. 
Decouple shape change from shifts.

Fig: Shannon et al 2016



Data Challenges

Need to be accurate:  Shift 
due to GWs is only a tenth of 
a phase bin. 

Standard timing approach 
makes it difficult/impossible 
to distinguish timing noise 
due to shifts, from timing 
noise due to changing profile 
and mismatched template.

2 L. Lentati et al.
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Figure 1. Noiseless model for the deterministic profile of PSR J1909�3744
at zero phase (black line), and after being shifted by 100ns, equivalent to
the e↵ect of a passing GW from a 10�15 isotropic GWB (red line). In the
PSR J1909�3744 10cm dataset described in Section 6 this corresponds to,
at best, ⇠ 1 tenth of a phase bin.

files. Alternatively, rather than use the averaged data, a smoothed
version of the template can be used (e.g. Demorest et al. 2013), or
analytic functions can be fit to the averaged profile to form a noise
free template (e.g. Manchester et al. 2013).

Once a template has been developed it is then used to form the
TOAs for each observational epoch. This is most commonly done
via the ‘Fourier phase-gradient method’ (Taylor 1992) in which the
phase o↵set between the two is computed using the Fourier trans-
form of both the template, and the profile at each epoch, and a cross
correlation between the two performed. Alternative time domain
approaches have also been used (e.g. Hotan et al. 2005), however
regardless of the approach, they all share a common assumption;
that the profile is stable within radiometer noise from epoch to
epoch.

While long term stability of pulse profiles has been shown in
some pulsars (e.g. Shao et al. 2013), epoch to epoch variation in the
profile shape has also been observed. For example, a study of mor-
phological variability in PSR J1022+1001 suggests that the pulse
profile varies at the few per cent level (Hotan et al. 2004), while
PSR J0437�4715 has also been observed to show timing instability
(Hotan et al. 2006). In both cases the origin of the instability could
be instrumental, for example, due to polarization calibration errors,
or it could be the results of the intrinsic stochasticity of the pro-
file. The individual pulses from a pulsar are known to show a high
degree of variability (e.g. Hankins & Cordes 1981), and so as in-
strumentation improves and radiometer noise decreases, this intrin-
sic stochasticity will unavoidably become more significant within
a single observation. Profile variability has also been oberved in
young pulsars, where in some cases timing noise has been found
to be correlated with changes in the pulse shape (Lyne et al. 2010).
Pulse profile variability associated with instrumental distortions has
also been widely observed, particularly in jitter-dominated obser-
vations of young pulsars or with instruments with low-bit digi-
tisation (Jenet & Anderson 1998). Typically the e↵ects of these
distortions have been modelled in the TOA domain. This is done
both by including additional white noise parameters re↵ered to as

‘EFAC’ and ‘EQUAD’, which scale and add in quadrature to the
formal TOA uncertainties, and by incorporating a model for low
frequency timing noise into the analysis (e.g. Lentati et al. 2014;
van Haasteren & Levin 2013; Coles et al. 2011). This has the dis-
advantage that in a single pulsar these distortions could be covariant
with the GW signal (see Figure 2).

In the top panel of Fig. 2 we compare simulated residuals in-
duced by the GW signal from an isotropic stochastic background
with an amplitude of 1 ⇥ 10�15 (black line), with those that result
from the passage of an additional Gaussian component through
the profile, with an amplitude of 0.5% that of the observed pro-
file, which is not appropriately modelled by the single average
profile used to form the TOAs (see bottom panels). All TOAs
were simulated using the highest signal to noise profile in the PSR
J1909�3744 dataset used in Section 6, resulting in uncertainties of
20ns for each observation. The two signals are of comparable am-
plitude, implying that any unmodelled profile variation larger than
this will quickly dominate over a GW signal in the TOAs.

In Lentati et al. (2015) (henceforth L15) a Bayesian frame-
work was introduced dubbed ‘Generative Pulsar Timing Analysis’
(GPTA) that allows for a full timing analysis using the folded pro-
file data, rather than the SATs that result from the cross correlation
with a profile template. This allowed for analysis of the pulsar’s
timing model, along with intrinsic stochastic processes such as spin
noise – low frequency variation in the pulse TOAs – simultaneously
with a model for the pulse profile, for which a shapelet basis was
used.

In this work we extend this framework to incorporate epoch
to epoch changes in the profile. We include a model for pulse jit-
ter – high frequency stochastic variation in the arrival time of the
profile model – along with models for variations in the shape of
the profile, which we obtain by calculating the power spectrum of
the variance in our shapelet model as a function of scale in phase
space. While this doesn’t constitute a physical model for the epoch
to epoch stochasticity, by obtaining the power spectrum of the vari-
ations, we can begin to characterise the shape changes in a statisti-
cally robust manner, ultimately leading to a better understanding of
their origins.

In Sections 2 to 5 we describe the models used in our pro-
file domain analysis, and how we implement them in our Bayesian
framework. In Section 6 we describe the 10cm PSR J1909�3744
dataset that we use to construct our simulations described in Sec-
tion 7, and that we use in our analysis in Section 8. Finally we o↵er
some concluding remarks in Section 9.

2 A PROFILE DOMAIN MODEL

The methods used in this analysis are drawn from those presented
in L15. Here, our pulsar timing analysis is performed entirely with
the profile data, rather than the TOAs formed from those profiles.
Qualitatively, in each likelihood calculation, we construct a model
for the determinstic (or average) profile using a shapelet basis, and
generate a model time of arrival at each observational epoch for
that profile using the pulsars timing model. Both these steps oc-
cur simultaneously, such that both the parameters that describe the
shapelet model, and the timing model parameters are free to vary
within our analysis.

While a full description of the general framework we will use
is available in L15, in this work we will be extending the method-
ology significantly to incorporate the possibility of epoch to epoch
variation in the profile. We include models for pulse jitter – a shift

c� 0000 RAS, MNRAS 000, 000–000
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Data Challenges

May be seeing discrete profile changes in other MSPs : J0437-4715 (again). 
If we can model profile change simultaneously with spin down change could  
significantly decrease covariance of timing noise and GWs.



Data Challenges (Last One)

PPTA limit as a function of time: 
Dashed line = Theoretical decrease for noise only 
Different colours are different models for the 
Solar System (JPL Ephemeris) 

Limits now depend on this :( 

Fig: Ryan Shannon



Data Challenges (Last One)

Simulated arrival times over > 40 years 

Simulated in DE418 and measured in DE421 

Looks like Saturn.. 

Cool! But Annoying..

Fig: Ryan Shannon



Back on topic..



The SMBHB sky - to First Order

De Lucia  et al 2006
Ferrarese & Merritt 2000, Gebhardt et al. 2000

+



Certainly some compelling candidates

E.g. Graham et al 2015 
< 0.1pc separation 
108.5 solar mass

The SMBHB sky - to First Order



So assume all binaries are circular, they will form a stochastic background 

with a red power  spectrum  
(Phinney 2001): 

with the signal dominated be extremely massive (> 108 solar mass)  
relatively low red shift (z < 1) MBH binaries (AS et al 2008, 2012)

The SMBHB sky - to First Order



Astrophysical Problems

Canonical assumptions of ‘vanilla’ models: 

• All Galaxy mergers result in a SMBHB merger 
• SMBH scale with properties of host galaxy 
• SMBHB are driven by the emission of GWs in the PTA band. 

Basically a ‘best case’ scenario. 

Problems: 
 
Merger rate not well known. 
Scaling relations uncertain 
Interaction with the environment (energy loss through non GW channels)



EPTA limit –  Simultaneously estimate contributions from the four main sources of correlated  noise, as all 
contributions correlated in the data (Tiburzi 2015). 
Use best six pulsars from EPTA 2015 data set : 18 years of data

Power Law Limit: 
A < 3E-15 at f=1yr-1 
2x better than last EPTA limit

Directly obtain confidence 
intervals on correlation  
between signals – consistent  
with anything

Figures: Lentati et. al. 2015

Astrophysical Problems 
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Astrophysical Problems 

PPTA 2015 

Astrophysical problems 

annoying 
Fig: Xavi Siemens 
IPTA meeting 2015
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Astrophysical Problems 

   
  

 

Fig. 2. Predictions and limits on the GWB strain spectrum.  The black asterisks (labeled P15) 
shows the 95% confidence limit we obtain, assuming hc(f)=Ac,yr[f/(1 yr-1)]-2/3.  The other symbols 
show previously published limits from the European Pulsar Timing Array (triangle, labeled E15, 
Ref. 20), the North American Nanohertz Observatory for Gravitational Waves (circle, labeled 
N13, Ref. 29) collaborations, and our previous limit (square, labeled P13, Ref. 8).  Each panel 
shows a different prediction for the GWB as a shaded region that represents the 1-σ uncertainty, 
including four models for SMBH evolution, labeled S13 (9), M14 (10), K15 (12),  and R15 (11), 
which predict a power-law form for hc(f).  Models Exp (See supplementary section S2.2, Ref. 13) 
and R14 (22) include the effects of environmentally driven binary evolution and therefore predict 
more complex strain spectra.   The black curves show the nominal single-frequency sensitivities 
of our observations (see supplementary section S2.2, 13), and is above our limit because of the 
statistical penalties applied when searching individual frequencies.   In Panel D, the blue 
pentagon (labeled A95,SKA) shows the projected upper limit on Ac,yr obtained with a single-pulsar 
timing campaign with a next generation radio telescope (the SKA; see supplementary section 
S2.2, Ref. 13), and excludes all models considered with greater than 98% probability.  

  

Ruled out large fractions of (then) published models. 

Main source of GWs in pulsar timing band is  
merging super massive black hole binaries. 

Limits have significant implications for Cosmology: 

Merges less frequent? 

Energy lost through environment? 

Mergers stalling? 

Lots of questions!

Fig: Shannon et al 2015



Astrophysical Problems - Environment 

Interaction with gaseous/stellar environment  
suppresses the signal at the lowest  
frequencies. 

Eccentricity has a similar effect



Broken power-law models can mimic possible environmental effects  
(Sampson et al 2015). 

Can potentially determine if a non-detection provides any evidence for a  
turnover in the spectrum.

Astrophysical Problems - Environment 
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Astrophysical Problems 

11 years of data 
Very stable pulsar 
High frequency (avoids ISM) 
100ns rms 

No evidence for low frequency noise 
of any kind! 

Astrophysical problems 

11 years of data for a particular pulsar 

3GHz data (avoid ISM) 

100ns rms 

no evidence for low frequency timing 
noise of *any* kind. 

What is the amplitude of the GW  
signal in the pulsar timing band? 



Astrophysical Problems 

BH-galaxy relations maybe biased high 
(Shankar et al 2016) 

If so, amplitude may be 3x lower, 
(Sesana 2016) 
pushes back detection by ~7 yrs 



Astrophysical Problems 

Signal isn't smooth 
Nor Gaussian 
Maybe Anisotropic 
Will have bright sources 



Anisotropic Stochastic Background
Distribution of sources likely 
not isotropic. 

Use spherical harmonics to model 
distribution of power on the sky. 

Additional prior: 
Amplitude is positive! 

Pixelate sky model – keep only 
solutions with: 
  

See: 
Mingarelli et. al. 2013 
Taylor & Gair 2013 

Figure: Taylor & Gair 2013



Anisotropic Stochastic Background

Monopole (Isotropy) 
Gives Hellings-Downs curve.

Quadrupole

Dipole

Octopole

Different Spherical harmonic components give different correlations.

Figure:  
Mingarelli et. al. 2013



Anisotropic Limits – EPTA 2015 Dataset

Data provides no constraints 
on anisotropy (yet!). 

Upper limits at each scale 
the result of physical prior.

Figure:  
Taylor et. al. 2015



First detections?

(Rosado et al 2015)  
Will probably be a stochastic background first,  
however non-negligible probability of a single source.



Single Sources

Current best limits from EPTA 
(Babak et al 2015)

Exclude the presence of sub-centiparsec 
binaries with chirp mass 109 solar masses out to  
25Mpc, and  1010 solar masses 
out to  1Gpc (z ≈ 0.2).  



Single Sources Catalina survey: 

9yr baseline, 250000 QSO 
111 period light curves 
many have period, redshift, mass, sky location 

(Sesana in prep (i think?)) 
Can use sample to compute merger rate  and use it 
to generate GW signal. 
PTAs can already rule it out. 



Future Prospects - LEAP

3 years of data with 4 pulsars: 
Limit = 1.2x10-14 

Assuming standard scaling laws will better 
current limits in another 3 years. 

•Coherently add pulsar observations  
 from the five 100m-class  
 European telescopes.

•Comparable in aperture  
to the illuminated Arecibo dish,  
but able to cover – 30 < dec < 90.

•See Bassa et al 2015 for details.
•Monthly observations of 23 pulsars.
•Now approximately 4 years of data.
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Computational Challenges

But dimensionality becoming a big issue: 
One pulsar can have 100 parameters 
Total can be thousands 

Most parameters are related to modelling the white noise: 
Not very covariant with low frequency noise 
Can fix based on single pulsar analysis 

Reduces total parameter space to 50-100 
So can use multinest/MCMC 
But not ideal. 

Options - Different samplers for large dimensional problems 
Gibbs Sampling (Van Haasteren et al 2014) 
Hailtonian Sampling (lentati et al 2013) 

In general though still a big problem 
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Summary

Pulsars can do a lot of things.  But that means you have to model a lot things. 

Current limits rule out ‘vanilla’ models.  Lots of dials to turn. 

Potentially a lot to be learned about the astrophysics of SMBHBs and galaxy mergers. 

But detections could be two, or twenty years away. 
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Summary

Pulsars can do a lot of things.  But that means you have to model a lot things. 

Current limits rule out ‘vanilla’ models.  Lots of dials to turn. 

Potentially a lot to be learned about the astrophysics of SMBHBs and galaxy mergers. 

But detections could be two, or twenty years away. 

Cheers


