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Plan of the talk

*Our present understanding of merging binary NSs
*Anatomy of GW signal: frequencies and EOS

*Role of B-fields and EM counterparts%& O

e
*Eccentric encounters and nucleosynthesis



The two-body problem in GR

Hanford, Washington (H1) Livingston, Louisiana (L1)

* For BHs we know what to expect: & | :
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* For NSs the question Is more subtle =
hyper-massive neutron star (HMNS), °°W«/‘f~v~wm~w~w MMMMM

Strain (10"“)
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* HMNS phase can provide ‘ —

+ 2016
clear information on EOS
artist impression (NASA)
NN BH+torus system may tell us
- on the central engine of GRBs

Normalized amplitude



Animations: Breu, Radice, LR

merger =——3 —3 BH + torus

L5220 EOS



Broadbrush picture

]\[/ A’Imaxa q= 1

A
binary (< 1kHz) HMNS (2= 4kHz) black hole + torus (5 — 6kHz) black hole(6 — TkHz)
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B + Forus

Quantrtative differences are produced by:
* total mass (prompt vs delayed collapse)
* mass asymmetries (HMNS and torus)
* soft/stiff EOS (inspiral and post-merger)
* magnetic fields (equil. and EM emission)

* radiative losses (equil. and nucleosynthesis)



How to constrain the EOS
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Anatomy of the GW signal
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Anatomy of the GW signal
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Anatomy of the GW signal
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Inspiral: well approximated by PN/EOB; tidal effects important



Anatomy of the GW signal
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Merger: highly nonlinear but analytic description possible



Anatomy of the GW signal

8_II|IIII|II |IIII|IIII|IIII| I|IIII

M“

|
=~
| T
-
[
-
[ ——
L ———
N

GNH3. M =1.350M,

_8_|||||||||||||||||||||||||||||||||||||
—5 0 D 10 15 20 25

t [ms|

post-merger: quasi-periodic emission of bar-deformed HMNS



Anatomy of the GW signal
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Collapse-ringdown: signal essentially shuts off.



Anatomy of the GW signa
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What we can do nowadays

Takami, LR, Baiotti (2014, 2015), LR+ (2016)
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-xtracting information from the EOS

Takami, LR, Baiotti (2014, 2015), LR+ (2016)
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A new approach to constrain the EOS

Oechslin+2007/, Baiotti+2008, Bauswein+ 201 |, 2012, Stergioulas+ 201 |, Hotokezaka+ 2013, Takami
2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, LR+2016...
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A new approach to constrain the EOS

Oechslin+2007/, Baiotti+2008, Bauswein+ 201 |, 2012, Stergioulas+ 201 |, Hotokezaka+ 2013, Takami
2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, LR+2016...
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Quasl-universal behaviour: inspiral
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“surprising’” result: quasi-
universal behaviour of GW

frequency at amplitude peak
(Read+201 3)

Many other simulations have

confirmed this (Bernuzzi+, 2014,
Takami+, 2015, LR+2016) .

Quasl-universal behaviour
in the inspiral implies that
once fmax IS Measured, so Is
tidal deformabillity, hence

I, Q, M/R

tidal deformability or Love number



Understanding mode evolution

On a short timescale after the merger, it Is possible to
see the emergence of f, 2, and f3,

hy x 10%* [50 Mpc]

f [ktiz




Understanding mode evolution

On a long timescale after the merger, only f2 survives

What produces the short-lived f; and f3 modes!
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A mechanical toy model for the fi,f3 peaks

* Consider disk with 2 masses moving
along a shaft and connected via a
spring ~ HMNS with 2 stellar cores

| et disk rotate and mass oscillate
while conserving angular momentum

0.60 20 100 150 200
0.5k l/'\""7”.\""7"?"',/'\I"',7ﬁ°","“\r""/’\"""ﬁ"7’“‘}"”'
. 57 ' ' ' 0.4 “‘ ‘ l'l ," “l ,'I \ | |l| »" |‘1 :', l‘. " l'l I'
*|f there 1s no friction, system will spin  =osl \ Al ALALLALLL L os
J \ | | | \ |

\/ \/

coscscbosssdeacsasaaaad —ccetesees Mbecsesdansaa

between: low freq (f|, masses are far w7 Cioymodd T 00 T
apart) and high (f3, masses are close).

*|f friction Is present, system will spin
asymptotically at f~ (fi+f3)/2.




A mechanical toy model for the fi,f3 peaks

* Consider disk with 2 masses moving
along a shaft and connected via a
spring ~ HMNS with 2 stellar cores

| et disk rotate and mass oscillate
while conserving angular momentum

t [ms]
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*|f there I1s no friction, system will spin
between: low freq (fi, masses are far = |
apart) and high (f3, masses are close).  |oxusqomzn |

*If friction Is present, system will spin
asymptotically at fo~ (fi+f3)/2.

* analytic model possible of post
merger (see later).
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Quasl-universal behaviour:
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We have found quasi-
universal behaviour: e,
the properties of the
spectra are only weakly
dependent on the EOS.

his has profound
implications for the
analytical modelling of the
GW emission: ‘what we
do for one EOS can be
extended to all EOSs.”




Quasi-universal behaviour; post-merger

N, gy~ ] Correlations with Love
! S, TR 11 number found also for high
3.0 . —
- s ™ 11 frequency peak f;
3.0 s — .0.\Q\ :_
o sk u.}.\;‘. -
=B : Feree -
'ﬁ' [ I_II|IIII|IIII|III\I~|\II__
Sy APRA4 o 100 200 300 400
- ALF2 é -
2.5 SLy —
H4
- GNH3 |
- v LS220 ° . ;\/ :T
L —— Eq. (23) - - -
] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] .I I. -
100 200 300 400
Ky
Correlations also with compactness
These other correlations are

"0.12 0.14 0.16 0.18 3x107 4x107

weaker but equally useful. /R (/R [(g/em?)



An example: start from equilibria

Assume that the GW
signal from a binary
NS Is detected and
with a SNR high
enough that the two
peaks are clearly
measurable.

Consider your best
cholces as candidate
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An exam

EAe maeasure of the
fi peak will Tix a
M(Rf1) relation anc
nence a single line I
the (M, R) plane.

All EOSs will have

one constraint
(crossing)
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An example: use the M(R[2) relations

The measure of the f»
peak will fix a relation
M(R12,EQS) for each
FOS and hence a
number of lines in the
(M, R) plane.

The right EOS will
have three different
constraints (APR,
GNH3, SLy excluded)
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An example: use measure of the mass

f the mass of the
DINary 1S measurec
from the inspiral, a

)

additional constraint

can be mposed.

The right EOS wil

have four different
constraints. |deally,
single detection

d

would be sufficient.
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This works for all EOSs considerec

In reality things will be
more complicated. [ he
lines will be stripes;
Bayesian probability to
oet precision on M, R.

Some numbers:

M_ v

=3t sl Mpeairee,
uncertainty from Fisher
matrix is |00 Hz

*at SNNR=2, the event rate
s 0.2-2 yr'for different
ECISs:
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“lectromagnetic counterpart (EMC)

3-fields essential for EMCs. Most simulations use ideal MHD:
infinite conductivity, magnetic field advected.

You can ask some simple questions.

* can B-fields be measured during the inspiral!

?

s EMC produced before merger?

~J

* do B-fields grow after merger and yield EMCY?
* do B-fields grow after BH formation and yield EMC? ?

_ast two questions are incredibly hard to answer; may
require far more sophisticated numerics and microphysics




Waveforms: comparing against magnetic fields

Compare B/no-B field:

*inspiral waveform is different

but for unrealistic B-fields (1.e.
B O G]

* post-merger waveform s
different for all masses; strong B-
fields delay the collapse to BH

Influence of B-fields on
inspiral 1s unlikely to be
detected for realistic fields

M1.62—-B12_|

1 l L 1 1 1
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* at the merger; the

INsta

ollities and

3-field amplificat

NS create a strong shear layer which coulc

a Kelvin-Helmholtz instability; magnetic field can be amplified
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MHD Instabilities and B-field amplifications

e at the merger, the NS create a strong shear layer which could lead to
a Kelvin-Helmholtz instability; magnetic field can be amplified

* low-res simulations don't show exponential growth (Giacomazzo+201 )
high-res simulations show increase of ~ 3 orders of mag (Kiuchi+2015)

* sub-grid models suggest B-field grows to 10'® G (Giacomazzo+2014)
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MHD Instabilities and B-field amplifications

° 1.6
|
4 1.4 2.0 —  toroidal _J“‘lT
— . ‘~" \' ‘
i 3 = poloidal ,f 7 ‘
1.2 ‘
N 2 - -- ]
5 151 total /'v! -
1 1L.og X2 ++ total (global) ’
> | e ’
0 = ~
0 8 I_x‘ 1.0 ||||||||||||||||||||||||||| ; (55 gt -t
5 _ g - - i L
I 0.6 m - P, T L e omomom =
Eor 0.5
MR
)
) 1™ 0.0 |
%1 2 3 4 5 6 7 850 1 2 3 4 5 6 7 8 0.0 E—

x [km] « [km]

* differentially rotating magnetized fluids develop an MRI

* the MRI leads to exponential growth of B-field and outward
transfer of ang. momentum (accretion in discs).

e consensus MRI can develop in HMNS (Siegel+2013,Kiuchi+2014)

* degree of amplification is unknown: 2-3 or 5-6 orders of
magnitude! Resistivity! (Kiuchi+2015, Obergaulinger+2015)



What happens when two magnetised stars collide!?

Magnetic fields

Neutron stars
Masses: 1.5 suns
Diameters: 17 miles (27 km)
Separation: 11 miles (18 km)

Simulation begins 7.4 milliseconds 13.8 milliseconds

Magnetic fields in the HMNS have complex
topology: dipolar fields are destroyed.




LR+ 201 |

Magnetic fields

i\\w ﬂf‘p

Neutron stars
Masses: 1.5 suns
Diameters: 17 miles (27 km)
Separation: 11 miles (18 km)

Simulation begins 7.4 milliseconds 13.8 milliseconds
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These §|mu|at|ons hae-shovv that the merg‘éfuofa
magnetised binary has all the basic features behind SGRBS

J/M? = 0.83 Mio, = 0.063Mp  tacer ~ Myor /M ~03s




Results from other groups (IMHD only)

With due differences, other groups confirm this picture.

t/M = 1691

Kiuchi+ 2014
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A genuine multimessenger signal

*GWV signal shuts-off after
BH formation.

*EM signal roughly constant
during the HMNS phase

*After the BH formation,
the EM grows exponentially

*EM energy released ~ 10
erg; luminosity ~10% erg/s

*Despite crudeness, ball-
park numbers match
observations.




Beyond IMHD: Resistive Magnetohydrodynamics
Dionysopoulou, Alic, LR (2015)

*|deal MHD Is a good approximation in the inspiral, but not
after the merger; match to electro-vacuum not possible.

*Main difference In resistive regime is the current, which is
dictated by Ohm’s law but microphysics 1s poorly known.

* We know conductivity 0 Is a tensor and proportional to
density and Inversely proportional to temperature.

* A simple prescription with scalar (isotropic) conductivity:
J' = qv* + WolE" + Eijk”vak = (UkEk)Ui] :

o — 00 idea-MHD (IMHD)

040 resistive-MHD (RMHD) 0 = f(P; Prain)

o — 0 electrovacuum phenomenological prescription
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t = 19.861 ms t=21.311ms

20

I

 [km] IMHD z [km| RMHD

NOTE: the magnetic jet structure Is not an outflow. It's a
blasma-confining structure.

n IMHD the magnetic jet structure I1s present but less regular;

n RMHD 1t fit it 1s more regular at all scales.



Do we understand X-ray afterglows!?
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» X-ray afterglows have been observed by Swift lasting as long as
1021 0% s (Rowlinson+ | 3; Gompertz+ | 3)

* The X-ray afterglow could also be produced by a “magnetically-
driven” wind generated by differential rotation (Siegel+ 14)

* The X-ray afterglow could be produced by “proto-magnetar’: dipolar
emission with L, ~ 10*? erg s™! (Zhang & Mezsaros 01, Metzger+ | |, Zhang |3).



How long can the BMP survive!
Ravi and Lasky (2013)
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PDF of the collapse time for three EOSs. The vertical lines refer to values as
deduced from the observations of 4 SGRB remnants Rowlinson+ (201 3).



1 he elephant In the-room. .-

Magnetars are appealing for their simplicity but hardly a solution

» differential rotation lost over Alfven timescale: <~ 10 s; magnetically
driven wind can’t explain sustained emission for 103-10" s

» X-ray plateaus follow the gamma emission, yet magnetar must
come before the BH-torus.

* simulations do not show any sign of jet, which emerges only when
BH-torus Is producead.

Recap:
» X-rays produced by metastable magnetar

* samma-rays produced by jet and BH-torus system

Riddle: How can the gammas arrive before the X-rays?



A solution to the riadle?

LR, Kumar (2014) (also Ciolfi, Siegel 2014)
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A novel paradigm for GRBs!

LR, Kumar (2014)

* solves the timescale riddle: X-ray luminosity is produced by
=IMINGS ard=can last tptte 10 s

* solves the timing riddle: X-ray emission Is produced before gamma
emission but propagates more slowly.

* consistent with simulations: slow wind Is produced in many ways.
* unifying view with long GRBS: jet propagates In confining medium.

* predictions: X-ray emission possible before gamma; IC of thermal
photons at break out.

* GW signal peak could be much earlier than gamma emission.

* potential problem: need a disk at collapse and this could be difficult
(Margalit+15).



Dynamically captured binaries
Radicet+ (2016)
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High-eccentricity mergers can occur in dense stellar
environments, e.g., globular clusters (GCs).

About 10% of all SGRBs show significant offsets from
the bulge of their host galaxies.

Offsets could be due to kicks imparted to the binaries,
or to binaries being in GCs around host galaxy.
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Mass ejection

E | | l | 3
- / .
1072 =
5 - i
5 1077 [ =
= - —— LKRP5
104 —— LKRP7.5_
s —— LK_RP10 =
B — LK_QOC ]
10—5 | L L1 T
0 10 20 30 40

t [ms]

* Xasselectec -tlependson
whether neutrino losses are
taken into account (less

ejected mass If neutrinos are

taken into account)

Me; [Mo)]

¢ Mass-ejected clepends on
impact parameter and takes
place at each encounter.

* Quasl-circular binaries
have smaller ejected masses
(I-2 orders of magnitude)

10° — T =
L —— HYQC - i
10 - —— LK_QC , & E
10-2 |- —— MO.oC _
(= =
1074 : —
L PY i
1072 3 B HYRPX E
10-6 ® ® 1KRPX B
- A MO_RPX _
10—7_ | | | | | |
0.0 5.0 7.5 10.0 15.0

rp/ Mg



— miod o — =3 Distributions in electron
fm\\_ — %] fraction, entropy, velocity
]] IIIII eccentri; | circular Broader distribution in Ye
0.08 0.16 ()}./'24"6.32"0.40' o.os'o.ie”o;m 032 040 when neutrino losses are taken
- ————————— into account

MO_RP10 4 K

Mass ejected at all latitudes
but predominantly at low
elevations (orbital plane)

0°  225° 45°  67.5°  90° 0°

0
| I | I I
—— HY_RP10_]

LK.RP10 § F
MO_RP10 | [

Broad distribution in asymptotic
velocities independent of Intial
condrtions

J.01 0.17 0.33 0.49 0.01 0.17 0.33 0.49

Voo |] Voo [C]




Macronova emission

Energy via radioactive decay of r-process nuclel powers transients
in optical/near-infrared with peak emission after (Grossman+ 14)

M. 1/2 1/2 =
Lol — 1Y . X % (Voo) days,
102 Mg 10 cm? g—1 0.1c

The peak bolometric luminosity Is estimated to be (“ectonova’)

M. l—a/2 o —a /2 <U > /2
L =25x10% ol = T
= (10—2 M@) = (10 cm? g—1> (0.1 c> =

with radioactive energy release a power law € = éy(t/to) “, a ~ 1.3

Fccentric binaries: ~ 4 times more luminous than quasi-circular;
delayed peak emission: ~ 8 days (cf. |.5)



Nucleosynthesis
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* fjected matter undergoes nucleosynthesis as expands and cools.

* Abundance pattern for A>120 is robust and good agreement
with solar (2nd and 3rd peak well reproduced)

* Abundances very robust: essentially the same for eccentric or
quasi-circular binaries



Conclusions

*Modelling of binary NSs in full GR is mature: GW:s from the
inspiral can be computed with precision of binary BHs

*Spectra of post-merger shows clear peaks, some of which are
"quasi-universal’. If observed, will set tight constraints on EOS

*Magnetic fields unlikely to be detected during the inspiral but
important after the merger: instabilities and EM counterparts

* Eccentric binaries are rare but with larger ejected matter and
macronova emission. high-A" nucleosynthesis very robust

Detection of waveforms from BNSs has potential to solve
two fundamental problems: EOS, GRBs.We can’t wait...



