Stochastic gravitational wave background from binary black holes

Irina Dvorkin (Institut d'Astrophysique de Paris)

Joe Silk, Elisabeth Vangioni, Jean-Philippe Uzan, Enrico Barausse (IAP), Keith Olive (U Minnesota)

> MNRAS 461, 3877 [arXiv:1604.04288] Phys. Rev. D 94, 103011 [arXiv:1607.06818]

> > IAP, 27 January 2017

Colpi & Sesana (2016)

Astrophysics with gravitational waves

S Starting to measure the BH mass distribution $({\tt LIGO}/{\tt VIRGO}\ {\tt Collaborations}\ [1606.04856])$

- Core collapse SN/direct collapse to a BH
 - Mass prior to core collapse: determined by stellar winds
 - Explosion mechanism

- Core collapse SN/direct collapse to a BH
 - Mass prior to core collapse: determined by stellar winds
 - Explosion mechanism
 - Supernova explosion and (partial) fallback of matter
 - Failed supernova: direct collapse into a BH

- Core collapse SN/direct collapse to a BH
 - Mass prior to core collapse: determined by stellar winds
 - Explosion mechanism
 - Supernova explosion and (partial) fallback of matter
 - Failed supernova: direct collapse into a BH
- Interactions in dense stellar environments

- Core collapse SN/direct collapse to a BH
 - Mass prior to core collapse: determined by stellar winds
 - Explosion mechanism
 - Supernova explosion and (partial) fallback of matter
 - Failed supernova: direct collapse into a BH
- Interactions in dense stellar environments
- Population III stars (metal-free)

- Core collapse SN/direct collapse to a BH
 - Mass prior to core collapse: determined by stellar winds
 - Explosion mechanism
 - Supernova explosion and (partial) fallback of matter
 - Failed supernova: direct collapse into a BH
- Interactions in dense stellar environments
- Population III stars (metal-free)
- Primordial black holes

• Core collapse SN/direct collapse to a BH

- Mass prior to core collapse: determined by stellar winds
- Explosion mechanism
 - Supernova explosion and (partial) fallback of matter
 - Failed supernova: direct collapse into a BH
- Interactions in dense stellar environments
- Population III stars (metal-free)
- Primordial black holes

Core collapse: islands of 'explodability'?

The goal: $M_{BH} = f(M_{initial}, Z, ?)$

Ugliano et al. (2012)

Core collapse: islands of 'explodability'?

The goal: $M_{BH} = f(M_{initial}, Z, ?)$

Ugliano et al. (2012)

Common envelope evolution

Isolated evolution of massive stars, $M_{BH} = f(M_{initial}, Z)$

From massive stars to black holes

Mass prior to core collapse is determined by stellar winds

Vink (2008)

From massive stars to black holes

Mass prior to core collapse is determined by stellar winds

Belczynski et al. (2016)

Cosmic metallicity evolution

Damped Ly- α systems data from Rafelski et al. (2012)

Dvorkin et al. (2015)

Daigne et al. (2004, 2006), Vangioni et al. (2015), Dvorkin et al. (2015)

Input

- Galaxy growth (inflow and outflow) prescriptions
- Cosmic star formation rate
- Stellar initial mass function
- Stellar yields
- Black hole mass as a function of initial stellar mass and metallicity

Daigne et al. (2004, 2006), Vangioni et al. (2015), Dvorkin et al. (2015)

Input

- Galaxy growth (inflow and outflow) prescriptions
- Cosmic star formation rate
- Stellar initial mass function
- Stellar yields
- Black hole mass as a function of initial stellar mass and metallicity

Constraints

- Cosmic chemical evolution
- Optical depth to reionization

Daigne et al. (2004, 2006), Vangioni et al. (2015), Dvorkin et al. (2015)

Input

- Galaxy growth (inflow and outflow) prescriptions
- Cosmic star formation rate
- Stellar initial mass function
- Stellar yields
- Black hole mass as a function of initial stellar mass and metallicity

Constraints

- Cosmic chemical evolution
- Optical depth to reionization

Output

• Birth rate of black holes per unit mass

Daigne et al. (2004, 2006), Vangioni et al. (2015), Dvorkin et al. (2015)

Input

- Galaxy growth (inflow and outflow) prescriptions
- Cosmic star formation rate
- Stellar initial mass function
- Stellar yields
- Black hole mass as a function of initial stellar mass and metallicity

Constraints

- Cosmic chemical evolution
- Optical depth to reionization

Output

• Birth rate of black holes per unit mass

Note: to get merger rate we need to assume time delay distribution

Input

- Galaxy growth (inflow and outflow) prescriptions
- Cosmic star formation rate
- Stellar initial mass function
- Stellar yields
- Black hole mass as a function of initial stellar mass and metallicity

	Model name	Ref.	Parameters	Parameter values
BH masses	WWp	Woosley & Weaver (1995)	A, β, γ	0.3, 0.8, 0.2
	Fryer	Fryer et al. (2012)	-	-
	WWp+K	Kinugawa et al. (2014)	$Z_{\rm limit}/Z_{\odot}$	0.001 or 0.01
	Fryer+K			
SFR	Fiducial	Vangioni et al. (2015)	ν, z_m, a, b	0.178, 2.00, 2.37, 1.8
	PopIII			0.002, 11.87, 13.8, 13.36
	GRB-based			0.146, 1.72, 2.8, 2.46
	Fiducial	Salpeter (1955)		2.35
INT	Steep IMF	Chabrier, Hennebelle & Charlot (2014)	J.	2.7
			Dvorkin	et al. [1604.0428

Black hole mass as a function of stellar mass and metallicity

- Woosley & Weaver (1995): piston-driven explosion, assuming an explosion energy
- Fryer et al. (2012) : analytic model, assume time delay, calculate the explosion energy and fallback mass
- Kinugawa et al. (2014) : $M_{BH} = f(M_{core})$ from Herant et al. (1994); Belczynski et al. (2002)

Metallicity

Total merger rates

Normalized to the observed merger rate: $R = 10^{-7} \text{ Mpc}^{-3} \text{ yr}^{-1}$

Merger rates vs. mass

Normalized to the observed merger rate: $R = 10^{-7} \text{ Mpc}^{-3} \text{ yr}^{-1}$

Stochastic gravitational wave background

• The background due to unresolved mergers of binary BHs

Stochastic gravitational wave background

- The background due to unresolved mergers of binary BHs
- Dimensionless density parameter (energy density in units of ρ_c per unit logarithmic frequency)

$$\Omega_{\rm gw}(f_o) = \frac{8\pi G}{3c^2 H_0^3} f_o \int dm_{bh} \int dz \frac{R_{\rm source}(z, m_{bh})}{(1+z)E_V(z)} \frac{dE_{\rm gw}(m_{bh})}{df}$$

 $R_{\rm source}(z, m_{bh})$ is the merger rate, dE_{gw}/df is the emitted spectrum

Stochastic gravitational wave background

Gravitational wave background from evolving binaries

BH binaries number density (simple case)

BH binaries number density (simple case)

If all BH are in binaries, and all merger products remain single, the number density n_X of binaries in a certain mass M and orbital parameters bin is set by: [where $\mathbf{w} = (a, e)$]

- The formation rate of BH (determined from stellar physics) $R_X(M, t)$
- The initial distribution of orbital parameters $\mathcal{P}_X(oldsymbol{w})$
- ullet The evolution in time of the orbital parameters of the binary $\mathrm{d}m{w}/\mathrm{d}t$

Evolution of the orbital parameters

General case $(\mathbf{w} = (a, e))$:

$$\frac{\mathrm{d}\boldsymbol{w}}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{w}, M)$$

A merger occurs when $\textbf{\textit{w}}=\textbf{\textit{w}}_{\rm merger}$

Evolution of the orbital parameters

General case $(\mathbf{w} = (a, e))$:

$$\frac{\mathrm{d}\boldsymbol{w}}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{w}, M)$$

A merger occurs when $\textbf{\textit{w}}=\textbf{\textit{w}}_{\rm merger}$

Example: evolution due to emission of GW [Peters & Mathews (1963)]

$$\frac{\mathrm{d}a}{\mathrm{d}t} = -\frac{64}{5} \frac{G^3 \mu m^2}{c^5 a^3} \frac{\left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right)}{(1 - e^2)^{7/2}}$$
$$\frac{\mathrm{d}e}{\mathrm{d}t} = -\frac{304}{15} \frac{G^3 \mu m^2}{c^5 a^4} \frac{e\left(1 + \frac{121}{304}e^2\right)}{(1 - e^2)^{5/2}}$$

Hydrodynamics (matter density ρ , coordinate x, velocity u = dx/dt):

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{x}} \cdot [\rho \boldsymbol{u}] = \boldsymbol{0}$$

Hydrodynamics (matter density ρ , coordinate x, velocity u = dx/dt):

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{x}} \cdot [\rho \boldsymbol{u}] = \boldsymbol{0}$$

Binaries (number density n_X , coordinate \boldsymbol{w} , velocity $\boldsymbol{f} = \mathrm{d}\boldsymbol{w}/\mathrm{d}t$):

$$\frac{\mathrm{d}n_X}{\mathrm{d}t} + \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{w}}.[n_X\boldsymbol{f}] = 0$$

Hydrodynamics (matter density ρ , coordinate x, velocity u = dx/dt):

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \frac{\mathrm{d}}{\mathrm{d}x} \cdot [\rho \boldsymbol{u}] = \boldsymbol{0}$$

Binaries (number density n_X , coordinate \boldsymbol{w} , velocity $\boldsymbol{f} = \mathrm{d}\boldsymbol{w}/\mathrm{d}t$):

$$\frac{\mathrm{d}\boldsymbol{n}_X}{\mathrm{d}\boldsymbol{t}} + \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{w}} [\boldsymbol{n}_X \boldsymbol{f}] = 0$$

Assuming $\partial/\partial t = 0$ (stationary distribution of binaries in the galaxy) \rightarrow stochastic GW emission from coalescing binary NS

Buitrago, Moreno-Garrido & Mediavilla (1994); Moreno-Garrido, Mediavilla & Buitrago (1995); Ignatiev et al. (2001)

Hydrodynamics (matter density ρ , coordinate x, velocity u = dx/dt):

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{x}} \cdot [\rho \boldsymbol{u}] = \boldsymbol{0}$$

Binaries (number density n_X , coordinate \boldsymbol{w} , velocity $\boldsymbol{f} = \mathrm{d}\boldsymbol{w}/\mathrm{d}t$):

$$\frac{\mathrm{d}\boldsymbol{n}_{\boldsymbol{X}}}{\mathrm{d}\boldsymbol{t}} + \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{w}} [\boldsymbol{n}_{\boldsymbol{X}}\boldsymbol{f}] = \boldsymbol{R}_{\boldsymbol{X}}$$

No stationarity Source function R_X is given by astrophysics

$$\frac{\mathrm{d}\boldsymbol{w}}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{M})$$

$$\frac{\mathrm{d}\boldsymbol{w}}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{M})$$
$$\frac{\mathrm{d}\boldsymbol{n}_{X}^{(1)}(\boldsymbol{M}, t)}{\mathrm{d}t} = \boldsymbol{S}(\boldsymbol{M}', \boldsymbol{M}', t)$$

$$\frac{\mathrm{d}\boldsymbol{w}}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{M})$$

$$\frac{\mathrm{d}\boldsymbol{n}_{X}^{(1)}(\boldsymbol{M}, t)}{\mathrm{d}t} = \boldsymbol{S}(\boldsymbol{M}', \boldsymbol{M}', t)$$

$$\frac{\mathrm{d}\boldsymbol{n}_{X}^{(2)}(\boldsymbol{M}, \boldsymbol{M}, \boldsymbol{w}, t)}{\mathrm{d}t} = \frac{1}{2}R_{X}(\boldsymbol{M}, t)\mathcal{P}_{X}(\boldsymbol{w})$$

$$- \frac{\partial}{\partial \boldsymbol{w}} \cdot [\boldsymbol{f}(\boldsymbol{w}, \boldsymbol{M}) \, \boldsymbol{n}_{X}^{(2)}(\boldsymbol{M}, \boldsymbol{M}, \boldsymbol{w}, t)]$$

$$\frac{\mathrm{d}\boldsymbol{w}}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{w}, \boldsymbol{M})$$

$$\frac{\mathrm{d}\boldsymbol{n}_{X}^{(1)}(\boldsymbol{M}, t)}{\mathrm{d}t} = \boldsymbol{S}(\boldsymbol{M}', \boldsymbol{M}', t)$$

$$\frac{\mathrm{d}\boldsymbol{n}_{X}^{(2)}(\boldsymbol{M}, \boldsymbol{M}, \boldsymbol{w}, t)}{\mathrm{d}t} = \frac{1}{2}R_{X}(\boldsymbol{M}, t)\mathcal{P}_{X}(\boldsymbol{w})$$

$$- \frac{\partial}{\partial \boldsymbol{w}} [\boldsymbol{f}(\boldsymbol{w}, \boldsymbol{M}) \boldsymbol{n}_{X}^{(2)}(\boldsymbol{M}, \boldsymbol{M}, \boldsymbol{w}, t)]$$

S is source term due to mergers

All the merger products remain single, all objects are born in binaries

Initial distribution of orbital parameters

Sana et al. (2012); de Mink & Belczynski (2015) Joint distribution: $\mathcal{P}_X(\boldsymbol{w}) = P(e)P(a)$

- $P(e) \propto e^{-0.42}$
- $P(\log T) \propto (\log T)^{-0.5}$ in $T \in (T_{min}, T_{max})$

Initial distribution of orbital parameters

Sana et al. (2012); de Mink & Belczynski (2015) Joint distribution: $\mathcal{P}_X(\boldsymbol{w}) = P(e)P(a)$

- $P(e) \propto e^{-0.42}$
- $P(\log T) \propto (\log T)^{-0.5}$ in $T \in (T_{min}, T_{max})$

Time to coalescence

 a_{min} chosen so as to fit the observed merger rate $(au_{merger} \propto a^4)$

Initial distribution of orbital parameters

Sana et al. (2012); de Mink & Belczynski (2015) Joint distribution: $\mathcal{P}_X(\boldsymbol{w}) = P(e)P(a)$

- $P(e) \propto e^{-0.42}$
- $P(\log T) \propto (\log T)^{-0.5}$ in $T \in (T_{min}, T_{max})$

GW background from BH binaries

Dvorkin et al. [1607.06818]

Massive BH binaries

- Massive BHs $M \sim 10^6 10^{10} M_\odot$ exist in the centers of galaxies
- Galaxy mergers should create binaries that emit GW

Massive BH binaries

• Massive BHs $M \sim 10^6 - 10^{10} M_\odot$ exist in the centers of galaxies

• Galaxy mergers should create binaries that emit GW Shannon et al. 2016

Estimated SNR with SKA

Assuming timing accuracy of 30 ns [PRELIMINARY RESULTS!!!]

Summary

• Future GW observations can provide constraints on stellar physics:

- SN explosion mechanism
- PopIII stars
- Properties of compact binary systems

Summary

• Future GW observations can provide constraints on stellar physics:

- SN explosion mechanism
- PopIII stars
- Properties of compact binary systems
- ... and galaxy-MBH co-evolution:
 - Formation of MBH binaries
 - Binary evolution, merger rates

Summary

• Future GW observations can provide constraints on stellar physics:

- SN explosion mechanism
- PopIII stars
- Properties of compact binary systems
- ... and galaxy-MBH co-evolution:
 - Formation of MBH binaries
 - Binary evolution, merger rates
- More detections to come soon: need tools to analyze them and extract astrophysical information