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GRAVITATIONAL RADIATION AND BINARY SYSTEMS
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GRAVITATIONAL SOURCES IN GR

Matter (or energy) sources affect the
geometry of spacetime

= Motions of asymmetric sources can
generate dynamical deformations

@ Spacetime description:
o curved “surface” of dimension 4
o coordinate system arbitrary (4 gauge degrees of freedom)
o 4d “distance” of the form (ds)? = g, dx*dx”
o Riemann tensor R’,,, = intrinsic curvature responsible for tidal effects

Gm
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@ Source description (in the generic coordinate grid x*)
o energy density: T
o momentum density (or energy flux): T
o stress tensor: TU



GRAVITATIONAL WAVES

Linear analysis near Minkowski metric 7),,,, [Einstein 1918]: g = N + 08w

EQUATION FOR THE GRAVITATIONAL FIELD

1
0y <6g’“’ — En“”dg)}\) =0 (gauge conditions removing 4 d.o.f.)
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EINSTEIN QUADRUPOLE FORMULA (AMPLITUDE)

h2(X, T) = 2G< Pija(N) Qua(T — R/C)+O( )>+O<R2>

V.

Using the first non-linear gravitational terms in the rhs of O equation:

EINSTEIN QUADRUPOLE FORMULA (FLUX)

d G ... ..
2 En(w) = —5 5 05()Q3(v)




BEYOND THE LINEAR THEORY

First nonlinear solutions... first doubts! [Eintein & Rosen 1937]
@ Are the singularities of the cylindrical wave solution problematic?

@ Should point masses following geodesics radiate? What about EP?

e What is meant by gravitational waves?

Answers found in the 60's-70's:
o Einstein-Rosen singularities are coordinate related

o Radiation is a non-local property
< to be studied w.r.t. the faraway observer “at rest”

e True dynamical degrees of freedom of the gravitational field

—> o Transport E, p, L over large distances w.r.t. curvature radius
o Transport information via the “vacuum™ part of the
curvature: initial discontinuity propagates along GW “rays”

2d.of. hy, hy ~ ©O, ©P components of h,ff‘d in spherical coordinatesJ




BINARY SYSTEMS AS GW SOURCES

TYPICAL SIGNAL AMPLITUDE

Characteristics of a good GW source:

m .

° 2 not too small: must be abundant or massive enough
c

@ ¢ not too small: must be asymmetric

e v/c comparable to 1: must be relativistic
m :
< for bound systems: — ~1 — strong field
rc

BEST CANDIDATES
Binary systems of compact objects

Such binaries may be composed of:
e Neutron stars (LIGO, Virgo)
e Stellar-mass black holes (LIGO, Virgo, even LISA for the heavy ones)
e Supermassive black holes (LISA, PTA)




INTEREST OF MODELING THE DYNAMICS ACCURATELY

@ To prove the quadrupole formula in the self-gravitating regime

e important issue after the discovery of the Hulse-Taylor pulsar
< needed to confirm the first indirect detection of GW

o problem subject to controversy in the early 80’s

o To understand the cardinal 2-body problem in general relativity
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@ To help extracting information from
observational data 10"
< relevant to build waveform templates
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POST-NEWTONIAN APPROXIMATION METHODS
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APPROXIMATION TECHNIQUES
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Effective-One-Body techniques
. : [Buonanno & Damour 1999] permits
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VALIDITY OF THE POST-NEWTONIAN REGIME

o Small velocities: maxv < ¢ @ Restriction to a spacetime

_ domain of (x, t) with
o Size of matter source D < \

near zone
hRV

exterior zone

M(hHY)

N
N
N
source \
N
N Aor
<
N
\

o |x] < A — near zone
e t € time domain

hHY

buffer zone
-




CASE OF COMPACT BINARIES IN ITS LATE STAGES

o Weak field:

v

~

I’12C2 ? <1

E ~v

but: starts to be large enough so that radiation reaction effects show up
— non-gravitational external forces then negligible

GmA

) R
o Large separation: A

> ¢
n» nac

very clean system




NEWTONIAN MODEL OF THE INSPIRALING PHASE

o Leading order quadrupolar flux = Newtonian order

@ e\, 0 for isolated binaries

balance equations for E, J = {

o E and r» \ at a rate ~ ¢°/2

= 2.5PN order
Gm Gm
2 e
=7 [1+ (rlzcz)(...)+..}
2
E = _“‘; X [1 +x()+ ]
. Gmw\ 2/3
with x = ( 3 )

e For circular orbits: E = E(x) and F = F(x) are gauge invariant

o Convergence at the formal ISCO: o slow for my/my — 0

o seemingly better for my ~ my



POSSIBLE APPROACHES

@ PN lteration Scheme in Harmonic coordinates: PNISH
o French flavored: effective T}” + dim reg + asymptotic matching

e initiated at IHP and Meudon in 1981 with Damour & Deruelle
e Blanchet-Damour-lyer generation in the mid 80's formalism

e calculation of 2.5PN quantities achieved in the mid 90's

e 3PN in the early 2000’s

— Blanchet, Damour, lyer, Faye, Le Tiec, Marsat, Bohé, Bernard, ...

o American flavored: perfect fluid + splitting of volume integrals
— Will, Wiseman, Kidder, Pati, ...

e Method a la Einstein-Infeld-Hoffmann (strong-field region avoidance)
< Futamase, ltho, Asada

o Effective Field Theory approach in harmonic coordinates: EFT
< Goldberger, Rothstein, Porto, Ross, Foffa, Sturani, Kol, Smolkin, Levi, ...

e Hamiltonian approach: ADM
< Schéfer, Jaranowski, Damour, Steinhoff, Hergt, Hartung, ...



PN ITERATION IN HARMONIC COORDINATES

Metric perturbation: h*” = /—g g"” — n*"

HARMONIC GAUGE EQUATIONS

O, =0 (gauge conditions)

16 1
Oht = ;GTMV_ 67TG| | TH + N(Dh, Dh)

h* searched in the form Z cMpH

[m]

m>mg(p,v)

@ Assume that previous orders h{fn”,] are known

@ Solution for h[‘,‘n”]

—a 1224 _ _

h{,‘"‘]’:167rG{D;1[7-"”(h ’3)}+26L(RL (t=r/c) .
£>0

= R}L“/ — R[ll [M(haﬁ)]

iy...ip

R (t 4 r/c) )}

[m—a]

e Go to the next order



GW GENERATION FORMALISM
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FIELD MULTIPOLE EXPANSION OUTSIDE THE SOURCE
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BLANCHET-DAMOUR-IYER MULTIPOLE MOMENTS

oA = A" (Relaxed EE) Oy =0 (Gauge Cond)

o At linear order: A — 0

o : Hi"(t —r/c)
- N i S S s
@ No-incoming wave solution of (REE): h go OL( p )
retarded solution of (REE) + (Gauge Cond):

source moments gauge moments

hHY = hwj[ Iy, Jy, Wy, X, YLaZL] J
~—— N———

e General expression for Iy, J; found by asymptotic matching

xi1 .. xfe
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POST-MINKOWSKIAN ITERATION

h* searched in the form Z G"hff,’)’

n>1

@ Solution of (REE) assuming past stationarity

wo_ —1 pv
Py = FPOR /\(n)
——

appropriate regularized retarted integral
. . v v v
o Solution for (REE) + (Gauge Cond) built as hf,) = p{,) + q{n

Ogay =0 with Oyq4) = —Oupla) = ln)

uwyo v nz
hwy = Play T Gin)




GRAVITATIONAL WAVES

FIRST TERM OF THE MULTIPOLE EXPANSION OF THE FORM

46 X1
rad
i (X, T) = c*R 4 cé—2e!{NL2U"fL2
o0 TT
= mNaL—2€ab(i Vj)bLz} (T —R/c)

Z

Generalizes the quadrupole formula




RADIATIVE MOMENTS

Link between the various multipole moment sets

Mi.S;
link S — Can link Can =R

. "
comparison between héxt

and h;}-T+ coord. transf.

source waveform

Ul J,..] = UMM, S] + UR M, S] + Uiy, S] + U™ [M, S] + ...
Vil J,..] = VMM, ST + VERIM, S] 4 viaiail g, S+ vimem M, S] + ...

e instantaneous terms: function of OXM,(TR), 9KS.(Tr)
o tail terms: depend weakly on the source past history

@ memory terms: depend strongly on the source past history



RECENT RESULTS: RADIATIVE MOMENTS

All links for 3.5PN waveforms have been computed [F., Blanchet, lyer (2014)]
Likewise for the quartic tail of tail of tail [Marchand, Blanchet, F. (2016)]
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< allowed to obtain the 4.5PN terms in F




RECENT RESULTS: PARTIAL HIGH ORDER AMPLITUDES

Recent partial results for F
— — . e Circular case (no spin)
Binaries of non-spinning ObJeCtSJ 4 5PN contributions (without 4PN)
[Marchand, Blanchet, F. (2016)]
lij at 4PN in progress [Marchand's thesis]

What we know
PN orders

Recent partial results for h

quantities | circular | eccentric | e Eccentric case (no spin)
EOM APN 3 5PN inst. part of the waveform at 3PN
. [Chandra Mishra, Arun, lyer (2015)]

E, J 4PN 3.5PN
o Circular case at 3.5PN:
E, J flux | 3.5PN 3PN @ mode (22)
o(t) 3.5PN 3PN [F., Marsat, Blanchet, lyer (2012)]
hy 3PN 1PN © mode (3,3), (3,1)

[F., Blanchet, lyer (2014)]

Works in progress...
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EQUATIONS OF MOTION AND CONSERVED QUANTITIES

e Compute the EOM
o from a reduced action S, a la Fokker: Seq = S[hf‘RﬁEE)LyA],yB]

YA h=hreg)[y al 0¥

. pv
o from the conservation of some T g ...

@ Deduce E, J, ..., in the COM frame
o Compute the relevant U;, V, in COM
e Deduce:

o the polarization amplitudes

o the orbital phase for circular orbits

dE(w) dp(w)
dt ) a Y J




SKELETON STRESS-ENERGY TENSOR

description of the dynamics of extended bodies in terms of:
o (x — y")
vV—E&

Effective linear momentum p, and spin S,

o Worldline density: n(x) = /d/\ = covariant §3(x — y)

Effective quadrupole moment: J**?? — encode spin/tidal induced

o Effective octupole moment: J 77 quadrupoles

[Bailey, Israel (1975); Dixon (70’s); Steinhoff, Pueztfeld (2009); Marsat (2015)]

2
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3 Apo Tpo 12v MR)\'rpaJ 4 :|

o €

c? (n )pTA § (u)TA
?R ‘r/\o‘jl/ e + ?R,T)\O'J Hor G:|}

+ Vp {n |:U(HC 51/)p—€R(MT)\O'J‘p‘D)T)\U o

2¢? c? 5
- ?vaa{n_]p(/w)a} + ?vapva{n.}m}(lw) } T cac




ORBITAL PHASE FOR QUASI-CIRCULAR ORBITS I

e S: total spin
@ 3: antisymmetric spin J ﬂ
°

m: total mass . o Sagas s

@ v = /m: symmetric mass ratio {

@ Resonance effects ignored

@ Absorption effects ignored

Quasi-circular motion

x—5/2

¢(X): — [1+X<pNs+X3/2 Pso +X2 Pss +x7/2 PSss
v

Gm?2 G2m* G3mb

+ x5<pT =+ } J




ORBITAL PHASE FOR ASI-CIRCULAR ORBITS I

x~%/2 ©so Ss SSS
d(x) = — 35 [1 + xpns + x*/? Cm? +x? Gﬁm“ 4+ X"/ gsme +x°p1 + ] J

2355 4 125 5, 4+ x| [( 554345 55 )5 4 ( 41745 i 15 ) ém ]
= — — xInx [ — - —v - —v
¥so 6 ¢ 8 ¢ 2016 8 ¢ 448 8

9407 7457 om
+x3/2 [7 Se + —E[]
3 6 m
2 8980424995 6586595 305 ,
+x -+ v— —v° ) S+ —
6096384 6048 288

170978035 2876425 4735 L\ om
_— + v+ —v —3y
387072 5376 1152 m

5/2 238842571 992571 323799571 2582457 dm 1
+x ST v) s, + (22T el 9 +o(—)
3024 36 12096 2016 m 6

[Bohé, Marsat, Blanchet (2013); Marsat, Bohé, Blanchet, Buonanno (2014)]



ORBITAL PHASE FOR QUASI-CIRCULAR ORBITS II

—5/2

3/2 $SO + X2 ¥ss + 7/2 $SSS
32v

B(x) = — [l—i—xcpNs—l—x ez TX G TX G3m6+x5<pT+...] J

256k_  25ky 5
— = 4 U (25K, +50)
2 2 16

55 = S2 (—25k4 — 50) + S,%, (—258k4 — 505 + 25K _) + X5 (

o [ [22156k_ 15635k, 31075
+ x| Sp + - + v (30K + 60)
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470356k 97755 47035k _ 2575k _
+5£ZZ(( - — = )+Z/<306K+ + 606 — ))
336 42 336 12
> 470355k_ 47035k, 410825
+52 (- + -
672 672 2688
20356Kk_ 4415k, 23535 N 1
v (- - + + 12 (—30k, — 60) +o(—)
48 56 112 c3

[Bohé, F., Marsat, Porter (2015)]
For black holes: ki =2 For neutron stars: k4 = 4-8
k— =20



ORBITAL PHASE FOR QUASI-CIRCULAR ORBITS II

—5/2
X [ 3/2 PSO 2 Pss 7/2 $Sss 5
o(x) = — 1+ xpNs + x +x + x + x> + ...
(x) 32v Gm? G?m* G3mb
3 (185f€+ o +515) L sy (11056,{+ 165\, 30855 4205k 165A,)
$sss=5; + 0 =L 2 4 24 2
o [ 20956k_  1656\_ 2095k,  165\y 24815
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3850k 556\ 556  385k_  55A_
+55 ( - SHN k. + =
2 64 6 2
3650k 555\ 10256 4175k _ 165X 1
+v (- = _ + - +0(=)-
8 2 4 24 2 c?

For black holes: A, =2
Ao =0

[Marsat (2015)]



ORBITAL PHASE FOR QUASI-CIRCULAR ORBITS II

x5/2 3/2 $sO 2 Pss 7/2 PSsS

_ 5
(x) = 32v [1+X<PNS+X Gm? v G2m* vl G3m® LS (PT—'_'"} J

5(3179 — 910X; — 2286X2 + 260X3)
672(12 — 11Xy)

2
_ o2 Rac X2
o =127~ (1+12X ) 1+

m / 1

my7/m

_ﬁx3/2+o(%)} +12

[Vines, Flanagan, Hinderer (2011); Damour, Nagar, Villain (2012)]
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4PN DYNAMICS: SYSTEM DESCRIPTION

ACTION OF THE FULL SYSTEM

1 v
16 G/d4 |: I_Z)\rl)/\P rp rp)\) Egﬂl’r“r :|

—_——

gauge fixing term
2
—E mac /dt —(guw)avivy
A

o Gravitational Fokker Lagrangian put under the form

Lg = 327TG/d3[ L Oh — hDh+h8h8h+...]

h/“’ = h"*¥[y 5] truncated at order 1/c®

e Matching formula

B
Lred = Fp /d3x (i) L'+ EP /d3x - red
B=0

o

~
near zone PN exterior zone—5.5PN



4PN DYNAMICS: 4PN TAILL CONTRIBUTION

Homogeneous part of the solution s

@ Has the form

Z@(Rf”(t —r/c)— R"(t+ r/c))

r
£>0

o Contains the reaction force of the tail waves

effect non-local in time with a conservative part )

o First contributes to the action at 4PN

dtdt
Sta|| 5 8Pf2$0/6//| (3)( )

sop must be of the form roe”




4PN DYNAMICS: RESULTS

EOM obtained in 3 steps [Bernard, Blanchet, Bohé, F., Marsat (2016,2017)]:

@ Explicit integration of Zg over R3
+ point particle divergences treated with dim reg

© Elimination of j4, ¥ , ... from the Lagrangian
> the result o does not depend of ro
o is manifestly Poincaré invariant (at 4PN)

@ Unexpected presence of IR-regularization dependent terms
< parametrized by a second unknown parameter @

@ Calculation the 2 unknown parameters

< energy and periastron advance compared with their expressions
at first order in mp/my (self-force calculations)

Agreement with the 4PN Hamiltonian of [Damour, Jaranowski, Schifer (2014)] J




WHAT TO DO NEXT?

For non-spinning binaries: increase the accuracy to meet NR
o Clarify the 2 unknown parameters at 4PN; compute F
o Complete the computation of h; « at 3.5PN

e Go beyond quasi-equilibrium configurations (resonances)
see Newtonian dynamical tides [Flanagan, Hinderer (2008);

Chakrabarti, Delsate, Steinhoff (2013)]

For spinning binaries

@ Investigate the dynamics beyond quasi-circular motions [Klein's work]
< crucial to investigate the possible biases in LIGO/Virgo DA

o Take absorption effects into account
— fairly small but present

@ Compute all 4PN spin contributions to the phase
@ Obtain the 3.5PN amplitude
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Thanks for your attention
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