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- Inflation in brief 3 e

Inflation is a phase of accelerated, quasi exponential, expansion taking
place in the very early Universe, before the standard Hot Big Bang epoch
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Inflation solves the puzzles of the standard model of Cosmology



0 Inflation in brief P

Inflation is (usually) realized with one (or many) scalar field(s)
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— = - (p+3p)
a 6]\431
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If the scalar field moves slowly (the potential is flat), then pressure is negative
which, in the context of GR, means accelerated expansion and, hence, inflation takes place.



0 Inflation in brief . ,1@

Inflation (usually) stops when the field reaches the bottom of the potential

v (6)
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The field oscillates, decays and the decay products thermalize ... Then
the radiation dominated era starts ..



] The status of inflation
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Single field slow-roll models, with minimal kinetic terms, are perfectly compatible

with all astrophysical data (in particular CMB Planck data)

- Universe spatially flat

- Phase coherence

- Adiabatic perturbations

- Gaussian perturbations

- Almost scale invariant power spectrum

- Background of quantum gravitational waves??
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q Planck 2013 constraints on inflafi e
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- Planck: and the winners are . X
Plateau inflationary models are the winners!

J. Martin, C. Ringeval R. Trotta & V. Vennin, JCAP1403 (2014), 039, arXiv:1312.3529

1.0f
0.81 i
< |
i 06 .
&
” sk Starobinsky ]
o Model/ HI inflation
0.2 i
0,0- T T B B
0 2 4 6 8 10

¢/ MPl

V(g) =M* (1 — e_\/%qb/MPl)2



gl The talk
Outline
QA Inflation after Planck 2013 & 2015: Theoretical and observational status
d Gravity waves produced during the slow-roll phase

[ Gravity waves produced at the end of inflation (preheating)

O Conclusions.



u Nous sommes tous des fluctu )@,

According to inflation, the source of the inflationary GW are the unavoidable
quantum fluctuations of the metric perturbations

Classical mechanics < E> — 0 frictionless pivot
amplitudegﬂ
. \massless rod
| hw
Quantum mechanics: <E’> -
T
trajectory e massive bob
equilibrium
position

These quantum fluctuations are amplified during inflation and give rise to a
background of GW today (NB, same mechanism for the origin of LSS
and CMB anisotropies)



Inflationary predictions: the twa
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The power spectra are scale-invariant plus
logarithmic corrections the amplitude of
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the microphysics of inflation
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Gravitational waves are subdominant
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0 What we can learn with GW

Detection of tensor modes

v '.'\ .
A

- Check the remaining key prediction of inflation

Planck 2015 + Bicep/Keck: r < 0.08 95%CL

- Final proof of vanilla inflation: consistency check (but needs ny)
- Energy scale of inflation

- Measurement of the first derivative of the potential

- Field excursion

- Greatly improve model selection

- Greatly improve constraints on reheating



a GW and B-modes

Detecting gravitational waves by measuring B-modes

- Ground based experiments: BICEP3 & Keck, SPTPol, ACTPol etc ...

- Balloon borne experiments: EBEX, SPIDER, PIPER etc ...

- Space Missions: CORE (Europe), EPIC, PIXIE (US), LiteBIRD (Japan)
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a GW and B-modes

Detecting gravitational waves by measuring B-modes

- Next generation of CMB mission with a target: r ~ 10-4
[Starobinsky model, r ~ (2-4) x10-3-Planckian excursion r~ 10-3]

15



= GW and B-modes )@l :

Detecting gravitational waves by measuring B-modes

- Next generation of CMB mission with a target: r ~ 10-4
[Starobinsky model, r ~ (2-4) x10-3 - Planckian excursion r~ 10-3]

- Forecast in the (ns, r) space
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a GW and B-modes

Detecting gravitational waves by measuring B-modes

- Next generation of CMB mission with a target: r ~ 10-4
[Starobinsky model, r ~ (2-4) x10-3 - Planckian excursion r~ 10-3]

- Forecast in the (ns, r) space

- Checking the consistency relation n.,
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[ Direct detection?
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[ Direct detection?
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0 Direct detection? i
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gt Preheating

After the end of inflation, the coupling between the inflaton field

and the "rest of the world" plays a crucial role

1 1,

L=—5(00) ~ V(9) — 5 (00) — 56°6*%°

Interaction term



gi. Preheating

After the end of inflation, the coupling between the inflaton field

And the "rest of the world" plays a crucial role
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Preheating : A@:

After the end of inflation, the coupling between the inflaton field
And the "rest of the world"” plays a crucial role

1

1, , 1
L= —3 (09)" = V(o) — 5 (Ox)" — ?92¢2X2

l Interaction term
k? 2 12
Yk + 3Hxk + lﬁ +g°¢ (t)] Yk =0
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gBt Mathieu equation

d? X
dz?

+ [Ax — 2gcos(22)] Xk =0

In the resonance band, one has exponential production of particles

B QQ(I)Z
4= A2

Mathieu Instability Card
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gl Preheating

L. Kofman, A. Linde, A. Starobinsky, hep-th/9405187

ey, Early structure formation
"bubbly stage”
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Explosive particle
production

6. Felder, L. Kofman, hep-ph/0011160

Thermalization
G. Felder, J. Garcia-Bellido, P. Green, L. Kofman,
A. Linde, I Tkachev, hep-ph/0012142



Preheating AR

The inhomogeneities produced during preheating can in turn source
gravitational waves
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glis  Preheating 0
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gl Recop N

[ There two types of gravity waves produced during inflation

O Detecting the B-modes is a way to detect the GW produced during the
slow-roll phase

O Direct detection of the GW produced during the slow-roll phase seems
very hard (the situation can maybe changed if one considers more
complicated models of inflation, eg pseudo inflation L. Sorbo,
arXiv:1101.1525)

O Direct detection of GW produced during preheating is maybe feasible;
The result is strongly model and parameter dependent.



