

Clues to the identity of the dark matter in the Milky Way

Carlos S. Frenk Institute for Computational Cosmology, Durham

warm dark matter

Both CDM & WDM compatible with CMB & galaxy clustering
There are claims that both types of DM have been discovered
CDM: γ-ray excess from Galactic Center
WDM (sterile v): 3.5 X-ray keV line in galaxies and clusters

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, Boyarski & Ruchayskiy '12

warm dark matter

How can we distinguish between these?

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, Boyarski & Ruchayskiy '12

warm dark matter

Obvious test: count satellites in MW or M31

In the MW: ~50 satellites discovered so far

This argument is WRONG!

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, Boyarski & Ruchayskiy '12

Most subhalos never make a galaxy!

Because:

- Reionization heats gas above T_{vir}, preventing it from cooling and forming stars in small halos
 - Supernovae feedback expels any residual gas

Luminosity Function of Local Group Satellites

- Median model → correct abund. of sats brighter than M_v=-9 and V_{cir} > 12 km/s
- Model predicts many, as yet undiscovered, faint satellites
- LMC/SMC should be rare (~2% of cases)

Benson, Frenk, Lacey, Baugh & Cole '02 (see also Kauffman et al '93, Bullock et al '00)

Luminosity Function of Local Group Satellites

- Median model → correct abund. of sats brighter than M_v=-9 and V_{cir} > 12 km/s
- Model predicts many, as yet undiscovered, faint satellites
- LMC/SMC should be rare (~2% of cases)

Benson, Frenk, Lacey, Baugh & Cole '02 (see also Kauffman etal '93, Bullock etal '01)

VIRG

icc.dur.ac.uk/Eagle

"Evolution and assembly of galaxies and their environment" THE EAGLE PROJECT

Virgo Consortium

Durham: Richard Bower, Michelle Furlong, Carlos Frenk, Matthieu Schaller, James Trayford, Yelti Rosas-Guevara, Tom Theuns, Yan Qu, John Helly, Adrian Jenkins. Leiden: Rob Crain, Joop Schaye. Other: Claudio Dalla Vecchia, Ian McCarthy, Craig Booth...

VIRC

APOSTLE EAGLE full hydro simulations

Local Group

Sawala et al '15

Dark matter

APOSTLE EAGLE full hydro simulations

Far fewer satellite galaxies than CDM halos Sawala et al '15

EAGLE Local Group simulation

Sawala et al '15

All halos of mass < $10^9 M_o$ or V_{max} < 7 km/s are dark

$$V_c = \sqrt{\frac{GM}{r}}$$
 $V_{max} = \max V_c$

"Too-big-to-fail" problem in CDM:

N-body CDM sims produce too many massive subhalos (e.g. >10 with V_{max}>30 km/s) BUT: Milky Way has only 3 sats with V_{max}>30 km/s

Why did the big subhalos not make a galaxy?

Sawala et al. '13, '15

No oo-big-to-fail problem in CDM

When "baryon effects" are included

So, we can't distinguish CDM from WDM by counting satellite galaxies

There is no need for despair: there is a way to distinguish them

warm dark matter

Rather than counting faint galaxies count the number of dark halos

warm dark matter

Gaps in stellar streams (PAndAS, GAIA) Gravitational lensing

Cooper et al '16

Subhalos crossing a cold tidal stream can produce a gap Globular cluster streams (e.g. Pal 5) may be best

Gravitational lensing: Einstein rings

When the source and the lens are well aligned -> strong arc of an Einstein ring Institute for Computational Cosmology

Halos projected onto an Einstein ring distort the image

Vegetti & Koopmans '09

Detecting substructures with strong lensing

Vegetti & Koopmans '09

Gravitational lensing: Einstein rings

Two important considerations:

- The central galaxy can destroy subhalos
- Line-of-sight projected halos also lens

Destruction of dark substructures by galactic baryons

Dark matter only simulation

Hydrodynamic simulation

Sawala et al '16

Destruction of dark substructures by galactic baryons

40% of subhalos in 0-10 kpc destroyed by interaction w. galaxy

• 20% " 50-200 kpc

"

Sawala et al '16

Subhalos & halos projected along the l.o.s both lens

The number of line-of-sight haloes is larger than that of subhaloes

Li, CSF et al. '16

Gravitational lensing: Einstein rings

Two key considerations:

- The central galaxy can destroy subhalos
- Line-of-sight projected halos also lens

Answer:

- Central galaxy destroys ~40% of halos within Einstein ring (Sawala et al. '16)
- Projected halos dominate the strong lensing signal (Li et al '16)

The subhalo mass function

Detecting substructures with strong lensing

- Σ_{tot} = projected halo number density within Einstein ring
- m_c= halo cutoff mass
- m_c = 1.3 ×10⁸ h⁻¹M_o for coldest 7 keV sterile neutrino
- 100 Einstein ring systems and detection limit: $m_{low} = 10^7 h^{-1}M_o$
- If DM is CDM → rule out 7 keV sterile ν at many σ
- If DM is 7 keV sterile $v \rightarrow$ rule \log^{100} out CDM at $3\sigma!$ Li, CSF et al '16

- ΛCDM: great success on scales > 1Mpc: CMB, LSS, gal evolution
- But on these scales ACDM cannot be distinguished from WDM
- The identity of the DM makes a big difference on small scales

Counting faint galaxies cannot distinguish CDM/WDM
 No too-big-to-fail when baryon effects are included
 Strong graviational lensing can distinguish CDM/WDM (and could rule out CDM!)