

Probing the Milky Way Halo with Stellar Streams

Carl Grillmair 19 September, 2016

Credit: Don Dixon

The Milky Way Halo

- The Galactic halo is a junkyard of old relics, preserving a history of collisions, accretions, mergers, and a few remaining, still intact structures.
- In addition to 34 dwarf or ultrafaint galaxies and ~150 globular clusters, the last decade has seen the discovery of 30+ tidal debris streams out to ~50 kpc.
- A similar number of local or nearby streams halo streams have been detected kinematically (e.g. the Helmi Stream, Arcturus, ECHOS).
- ~20% of the halo is accounted for by the Sagittarius Stream, along with perhaps 20 globular clusters.
- Current estimates of the fraction of halo stars in substructures ranges from 50 to 70%.

The Northern Galactic Cap

SDSS North

SDSS South

R.A.

Alpheus Grillmair et al. 2013, WISE/2MASS NGC 288?

Bits and Pieces

ATLAS Stream Koposov et al. 2014, VST ATLAS South Pyxis?

PAndAS MW Stream Martin et al. 2014, PAndAS Dwarf galaxy debris?

Ophiuchus Stream Bernard et al. 2014, Pan-STARRS 3π Stream fanning?

Something bigger?

Phoenix + Hermus?

90 Nodal precession due to the disk potential. Brings orbital planes into Hermus alignment in 0.5 orbits. 270° BHB stars with -2.2 < [Fe/H] < -1.6 $0 < \log g < 3.5$ -0.23 < (q-r) < -0.1b > 0, 11 < d < 21 kpc $70 < v_{gsr} < 130 \text{ km/s}$ Martin et al. in prep Phoenix 235° or ~76 kpc Need kinematic and Would make it the longest chemical tagging to verify... cold stream yet found.

Grillmair & Carlberg 2016

Regularity: Good for Streams, Good for You.

Individually, streams do not strongly constrain the global Galactic potential.

However, the very existence of the Pal 5 and GD-1 streams implies a large degree of regularity, or that these streams are on regular orbits (e.g. not chaotic) – Price-Whelan et al. 2015.

Pearson et al. (2015) show that the appearance and velocity of Pal 5 already rule out the triaxial potential of Law & Majewski (2010, based on modeling the Sagittarius stream), at least within 25 kpc.

Simultaneous Dynamical Modeling of Streams

Bovy et al. 2016

- flattening = 0.95 ± 0.05
- c/a = 1.05 \pm 0.14 (expect ~0.8 for maximal disk)
- $M(<20 \text{ kpc}) = 1.1 \pm 0.1 \times 10^{11}$

PS1

Pan-STARRS1

Bernard et al. 2016

14:00:00.0

12:00:00.0

8:00:00.0 **Right ascension** 6:00:00.0

Summary

- The harder we look, the more we find.
 - We expect to find dozens of new streams and satellite galaxies in the next couple of years, and perhaps hundreds by the time the Gaia mission ends.
- We are learning how best to use streams for probing both the halo and its constituents.
- The stellar halo may yet challenge ACDM.