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• Detailed chemical evolution and star-formation history: gas 
inflows/outflows, SNe yields, IMF, …

• Detailed measurements of spatial and kinematical distributions 
of stellar populations of different abundances, ages

• Archaeological record: metal-poor stars & early galaxy 
formation, chemical tagging

• Detailed dynamical modeling: 3D distribution of mass (stars, dark 
matter), importance of non-axisymmetric flows, resonances, …
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MILKY WAY DISK CONTEXT
• Double-exponential-ish with  

hZ ~ 350 pc,  hR ~ 2 - 3 kpc (e.g., Juric et al. 
2008, Bovy & Rix 2013)

• Mass ~ 5.5 x 10
10

 Msun, maximal or close to 
it (Bovy & Rix 2013)

• See Bland-Hawthorn & Gerhard (2016, 
ARAA) for most up-to-date Galactic 
parameters
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CHEMICAL EVOLUTION IN 
THE MILKY WAY



• Kinematically- and 
(~)metallicity unbiased 
sample of ~1,000 stars 
within ~50 pc from the 
Sun

• Improves on abundant 
earlier work by 
Fuhrmann, Prochaska, 
Reddy, Bensby, et al.

• Blue: high-velocity stars      
Red: low-velocity stars

THE ABUNDANCE PLANE IN THE SOLAR 
NEIGHBORHOOD

Adibeykan et al. (2012)





• Infrared H-band spectrograph

• high resolution (R ~ 22,500)

• S/N > 100 / pixel

• (J-Ks)0 > 0.5, H <~ 13.8

• vlos, logg, Teff, + 15 abundances                                              
(C,N,O,Na,Mg,Al,Si,S,K,Ca,Ti,V,Mn,Fe,Ni)

• APOGEE-1survey complete: 500k high-res spectra for 
~150,000 stars

• PI: Steve Majewski, + many people

APOGEE HI-RES BEYOND THE 
SOLAR NEIGHBORHOOD



Majewski et al. (2016) 
Credit: Michael Hayden,  
Background: R. Hurt, JPL-Caltech, NASA



•High-resolution spec. data allows us to select pure samples of 
RC stars (purity ~ 95%); calibrated w/ asteroseismology

•RC distances precise to ~5%, unbiased to ~2%, now ~20k 
stars; valuable for Gaia DR1

APOGEE RED-CLUMP CATALOG
Bovy et al. (2014)



ABUNDANCE DISTRIBUTION

•Solar neighborhood  [α/Fe] vs. [Fe/H] similar to 
previous high-resolution studies, e.g., HARPS sample 
(Adibekyan et al. 2012)

Nidever, Bovy et al. (2014)

Haywood et al. 
(2013)

Data from Adibekyan 
et al. (2012)

<~ 50 pc
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ABUNDANCE DISTRIBUTION

High-[α/Fe] 
sequence 

remarkably 
uniform 

throughout 
the Galaxy

Increasing 
radii = 

high-[α/
Fe] 

sequence 
disappears

Nidever, Bovy et al. (2014)

6 kpc 8 kpc 10 kpc



LARGER-SCALE ABUNDANCE 
DISTRIBUTION Hayden, Bovy, et al. (2015)

~whole disk!
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[Fe/H] 
(Fe,Ni)

[α/Fe] 
(O,Mg,Si,S,

Ca,Ti)

Early: SNe II: rich in α elements and iron-
peak

SNe Ia only produce 
iron-peak elements
and drive down the     

relative abundance of 
α to Fe
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•Early evolution of the Disk

HIGH-ALPHA SEQUENCE
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•Early evolution of the Disk

•Star formation and gas in/outflow 
must have been very similar 
everywhere at R < 10 kpc within 
the first ~4 Gyr of the Disk’s 
existence

•SFR constant to within ~15%

HIGH-ALPHA SEQUENCE
Nidever, Bovy et al. (2014)

Star formation

Gas outflows



DISSECTING THE MILKY WAY’S 
STELLAR POPULATIONS
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MONO-ABUNDANCE POPULATIONS

radial profile: scale lengthvertical profile: scale height

Bovy et al. (2012abc) using SDSS/SEGUE data



MONO-ABUNDANCE POPULATIONS

vertical profile: detailed 
distribution of mass

warm

cool

velocity dispersion: vertical

Bovy et al. (2012abc) using SDSS/SEGUE data



APOGEE MAPS
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Combination of Green et al. (2015), Marshall et al. (2006), Drimmel et al. (2003)
see Bovy et al. (2016b)



APOGEE MAPS: RADIAL PROFILE
Bovy et al. (2016a)

old

younger



APOGEE MAPS: RADIAL PROFILE
Bovy et al. (2016a)

old

younger



APOGEE MAPS: RADIAL PROFILE
Bovy et al. (2016a)

old

younger



APOGEE MAPS: RADIAL PROFILE
Bovy et al. (2016a)

old

younger

?



APOGEE MAPS: VERTICAL PROFILE
Bovy et al. (2016a)

old

younger
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RADIAL MIGRATION AND DISK FLARING

•*Requires: approx. Jz conservation, no “provenance bias” (Vera-Ciro 
et al. 2015,2016)



APOGEE MAPS: VERTICAL PROFILE
Bovy et al. (2016)

old

younger

• IF flaring due to radial migration:
• low-alpha (young): no strong 
provenance bias, Jz conservation, 
plausible for massive MW disk?

•high-alpha (old): probably strong 
provenance bias

•Difficult to imagine how to 
make the ‘thick disk’ through 
migration w/o flaring



MAPS AND THE OVERALL DISK

→

Bovy & Rix (2013)  
Rd ~ 2.15 kpc
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• High-alpha / old disk: centrally-concentrated, pure 
exponential —> MW formed ‘inside-out’

• Low-alpha donuts: strong correspondence between [Fe/
H] and (birth) radius —> equilibrium chemical 
evolution over last ~6-8 Gyr

• Flaring of low-alpha, cool populations —> consistent 
with radial migration

• No flaring of high-alpha populations —> likely 
formed thick in turbulent ISM (cf. high-z studies)

SEGUE/APOGEE MAPS: 
IMPLICATIONS                     
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MILKY WAY EVOLUTION
• Great progress in the last few years

• Radial migration: good theoretical underpinnings, shown to be 
important in various ways

• Disk evolution appears to have been very quiescent over the 
last ~10 Gyr, with no large fraction of stars accreted by mergers

• Disk formed inside-out, and was likely turbulent at redshift ~ 2

• But no coherent picture has yet emerged that ties everything 
together
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• Chemical homogeneity of open clusters and chemical tagging: 
Bovy (2016a) —> OCs are homogeneous to ~0.02-ish dex, 
not a single SN II during formation

• Dynamical modeling of the disk: e.g., Bovy & Rix (2013), Trick, 
Bovy, & Rix (2016) —> disk ~ maximal

• Dynamical modeling of streams: Bovy (2014), Bovy et al. (2016b) 
—> halo ~ spherical to ~10% in density

• Stream—dark-matter sub-halo encounters: Sanders, Bovy, & 
Erkal (2016), Bovy (2016b); Bovy et al. (2016a) —> Find CDM-
like population down to 3x10

6
 Msun —> DM cold

DIDN’T HAVE TIME TO TALK ABOUT
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• Exciting time for Milky Way studies with much new data on the way

• Now have abundance patterns over the entire radial range of the disk

• Chemical tracks (Nidever et al. 2014, Hayden et al. 2015): Early 
evolution of the Milky Way disk uniform

• Metallicity distribution functions (Hayden et al. 2015): see Michael 
Hayden’s talk tomorrow

• Spatial decomposition in metallicity/age reveals stellar donuts:  
[Fe/H] —> birth radius

• Low-[a/Fe] populations flare in agreement with naive predictions from 
radial migration


