

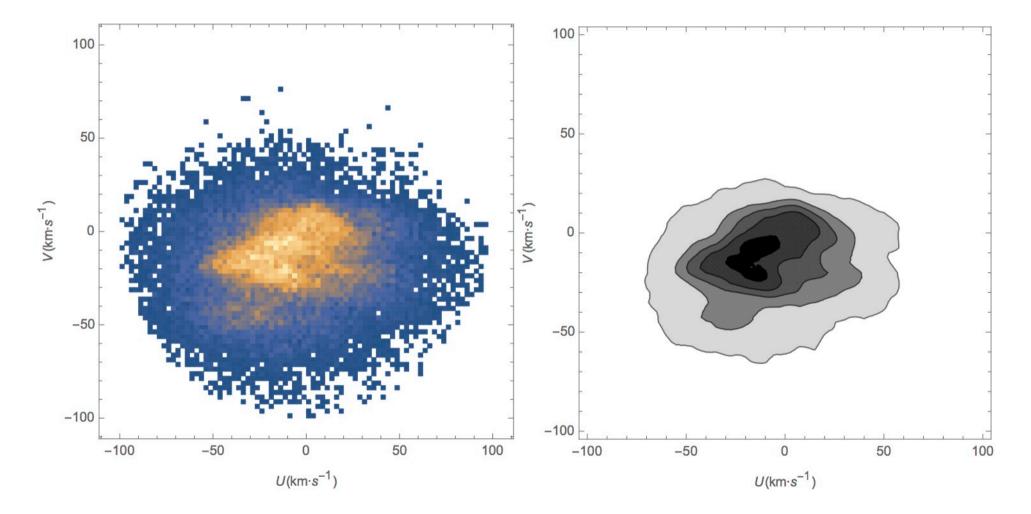
Benoit Famaey

CNRS - Observatoire astronomique de Strasbourg Work done with G. Monari, A. Siebert, O. Bienaymé

Dynamical models

Model of the Galaxy and of each of its components (stellar populations, gas, dark matter) through DF-potential pair => fundamental Galactic parameters enter the model $(V_0, V_{sun}, R_d, ...)$

Collsionless Boltzmann Equation for the DF:


df/dt = 0

Moments of f (integrate over velocity space) give observables

If in axisymmetry and equilibrium :

 $f = f(\mathbf{J})$ useful because \mathbf{J} adiabatic invariants

The Galaxy is not axisymmetric

Gaia DR1 ($\sigma_{\pi}/\pi < 0.1$) + RAVE DR5

Non-axisymmetric modelling

For the thin disk, we use the epicyclic approximation:

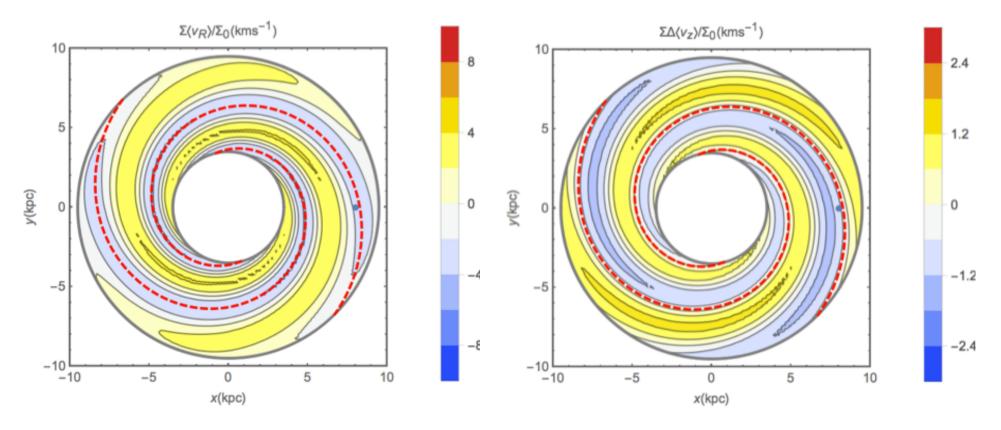
$$J_R = E_R/\kappa$$
, $J_\Phi = L_z$, $J_z = E_z/\nu$

Start from a parametrized axisymmetric DF f_{θ} , for instance:

$$f_0(J_R,J_\phi,J_z) = rac{\gamma ilde{\Sigma}_0 ext{exp}(-R_ ext{g}/h_ ext{R})}{4\left(2\pi
ight)^{3/2} ilde{\sigma}_R^2 ilde{\sigma}_z z_0} ext{exp}\left(-rac{J_R\kappa}{ ilde{\sigma}_R^2}-rac{J_z
u}{ ilde{\sigma}_z^2}
ight)$$

Then fit also the non-axisymmetric potential parameters to get the best possible $f_{\theta} + \varepsilon f_{I}$ fit : $\Phi_{1}(J, \theta, t) = \operatorname{Re}\left\{\mathcal{G}(t) \sum_{n} c_{n}(J) e^{in \cdot \theta}\right\}$ $\mathcal{G}(t) = g(t)h(t)$

Non-axisymmetric modelling


Linearized CBE:
$$\frac{\mathrm{d}f_1}{\mathrm{d}t} + [f_0, \Phi_1] = 0$$

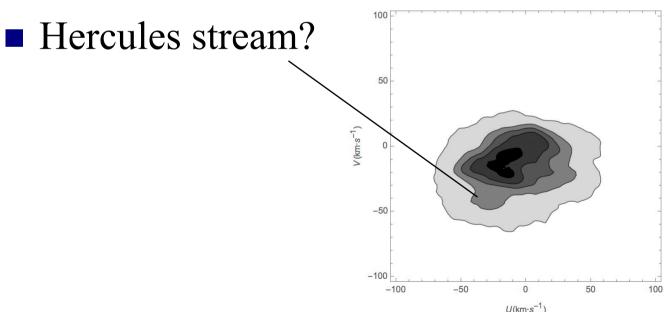
 $\frac{\mathrm{d}f_1}{\mathrm{d}t} = \frac{\partial f_0}{\partial \mathbf{J}} \cdot \frac{\partial \Phi_1}{\partial \boldsymbol{\theta}}$
 $\Rightarrow f_1(\mathbf{J}, \boldsymbol{\theta}, t) = \operatorname{Re}\left\{\frac{\partial f_0}{\partial \mathbf{J}}(\mathbf{J}) \cdot \sum_n nc_n(\mathbf{J}) \frac{h(t)\mathrm{e}^{\mathrm{i}n \cdot \boldsymbol{\theta}}}{n \cdot \boldsymbol{\omega} + \omega_p}\right\}$

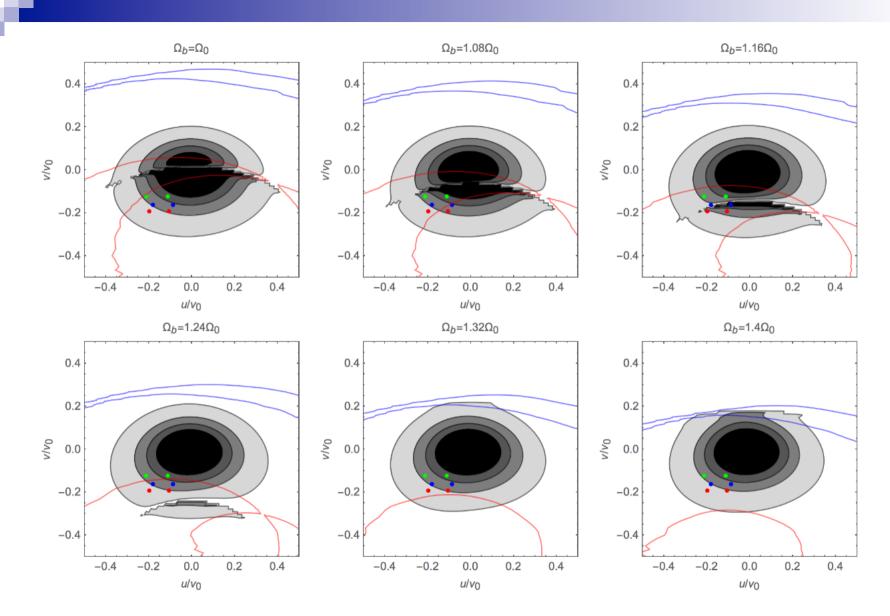
Assumption: we are currently in plateau of max amplitude

Take BT08 MW potential for Φ_0 , Schwarzschild DF for f_0 , 3D log spiral with local amplitude of 60% of backgd for $\epsilon\Phi_1$, compute DF moments

First order moments for log spirals

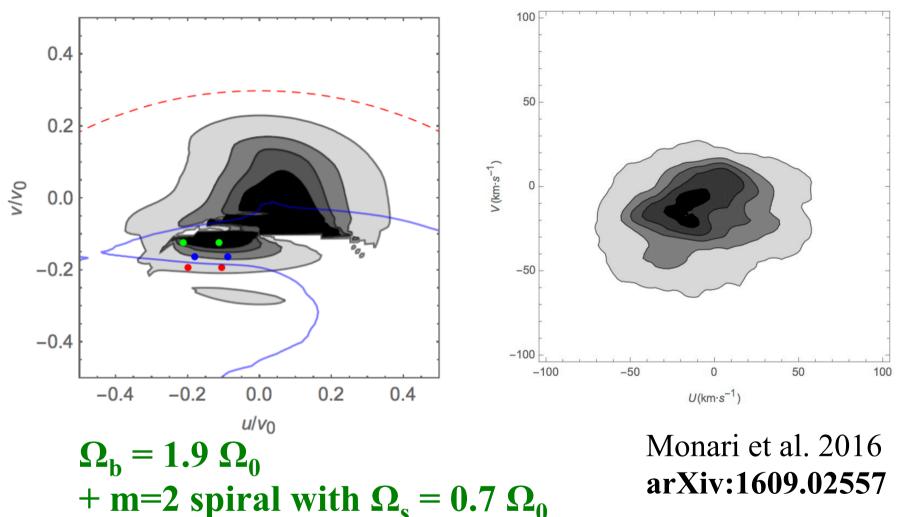
Monari, Famaey & Siebert (2016)


Breathing mode with $\Delta < v_z > \sim 1$ km/s (up to 3 km/s when coupled w bar)


Could be larger for transient spirals? (work in progress)

Recover bar and spiral parameters

- Pattern speed of the bar?
- 3D density of RC stars + gas kinematics
- \Rightarrow long extension of the bar reaching R~5 kpc
- $\Rightarrow \Omega_0 < \Omega_b < 1.45 \ \Omega_0$


(Portail, Wegg, Li, Gerhard et al.)

Quadrupole, ratio of bar/axisym radial force at the Sun = 1%, $\phi_b = 25^{\circ}$

Not a fit...

Bar pattern speed in accordance with all the old results from Dehnen, Minchev, Bovy, etc. + N-body simulations of Quillen et al (2011)

Conclusions

- Include the effect of the bar and spirals in the DF in action-angle coordinates => will be able to directly fit the DF and pot. parameters to observations
- Spirals produce non-zero mean vertical motions (breathing modes), more important when coupled with bar or when spirals are strongly transient
- No alternative to a fast bar (Ω_b > 1.8 Ω₀) found to explain shape of local velocity space. Has to be >1.3 Ω₀ to avoid signature of bar corotation
- Antoja et al. (2014) based on RAVE between ~0.9 and ~1.1 R0 => Hercules consistent with bar's OLR