The chemistry of the Milky Way disk

Thomas Bensby
Dept. of Astronomy and Theoretical Physics
Lund University
Sweden
The Milky Way has two disk populations

Thin disk:
- scale height: 250 pc
- normalisation: 98%

Thick disk:
- scale height: 1400 pc
- normalisation: 2%

Thick disks in external galaxies

Bulge and thin disk profiles shown, however a third diffuse component is needed to fit the luminosity distribution perpendicular to the plane, named the “Thick disk”.

![NGC 4570](image1.png)

![NGC 4350](image2.png)

![NGC 4340](image3.png)
The Milky Way as a benchmark galaxy

Milky Way is the only galaxy that can be studied in great detail and a good understanding of its stellar populations is important for our understanding of galaxy formation in general.
The Milky Way as a benchmark galaxy

Why does the Milky Way have two disk populations?

Need to characterize them in terms of

• velocities
• abundances
• ages

Not only in the solar neighbourhood, but throughout the Milky Way galaxy.
Nearby stars - no selection

- Fuhrmann’s study is 85% volume complete for all mid-F type to early K-type stars down to Mv=6.0, north of dec=-15°, within a radius d<25pc from the Sun

- Two types of stars:
 1. Old stars with high [Mg/Fe] ratios
 2. Young stars with low [Mg/Fe] ratios

Two types of stars - high-alpha & low-alpha

(data from Fuhrmann’s papers)

Two very different distributions of eccentricity and \(J_z \) for low- and high-\(\alpha \) stars

Two very different distributions of eccentricity and \(J_z \) for low- and high-\(\alpha \) stars
Metallicities

(data from Fuhrmann’s papers)

Thin disk: $\langle [\text{Fe/H}] \rangle = 0$
(see also, e.g., Nordström et al., 2004, Casagrande et al. 2011)

Thick disk: $\langle [\text{Fe/H}] \rangle = -0.6$
(see also, e.g., Gilmore, Wyse, Jones, 1995; Carollo et al 2010)

low-α stars
Solar neighbourhood

Solar neighbourhood, in the plane:

~90 % thin disk
~10 % thick disk

scale-heights:
300 pc & 1000 pc, respectively

To be sure to observe thick disk stars, you need to go at least 2 kpc above/below the plane

F and G dwarf stars usually too faint for high-resolution studies at those distances!!
Kinematical criteria to select nearby thick disk stars

\[P = X \cdot k \cdot \exp \left(-\frac{U_{\text{LSR}}^2}{2 \sigma_U^2} - \frac{(V_{\text{LSR}} - V_{\text{asym}})^2}{2 \sigma_V^2} - \frac{W_{\text{LSR}}^2}{2 \sigma_W^2} \right) \]

\[k = \frac{1}{(2\pi)^{3/2} \sigma_U \sigma_V \sigma_W} \]

<table>
<thead>
<tr>
<th></th>
<th>(\sigma_U)</th>
<th>(\sigma_V)</th>
<th>(\sigma_W)</th>
<th>(V_{\text{asym}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin disk (D)</td>
<td>35</td>
<td>20</td>
<td>16</td>
<td>-15</td>
</tr>
<tr>
<td>Thick disk (TD)</td>
<td>67</td>
<td>38</td>
<td>35</td>
<td>-46</td>
</tr>
<tr>
<td>Halo (H)</td>
<td>160</td>
<td>90</td>
<td>90</td>
<td>-220</td>
</tr>
</tbody>
</table>

Gaussian velocity distributions, \(X \) is normalisation in solar neighbourhood (~90% thin, ~10% thick)

Probability ratios: \(P(\text{TD}/D) > 1 \) is more likely to be a thick disk star
Chemistry of the Solar neighbourhood

712 F and G dwarf stars in the Solar neighbourhood

A clear dichotomy:
- An old and alpha-enhanced population
- Less alpha-enhanced young population

A bit further away

Inner disk
$4 < R_g < 7 \text{kpc}$

Solar neighbourhood

Outer disk
$9 < R_g < 13 \text{kpc}$

Alves-Brito et al. (2010)

No alpha-enhanced stars in the outer disk

=> Short scale-length for the thick disk!

See also, e.g., Cheng et al. (2012), Bovy et al. (2012)
Further away and larger samples - APOGEE

- Hayden et al. (2015), based on red giants from APOGEE DR12

No alpha-enhanced stars!

Abundance gradient in the thin disk
Further away and larger samples - Gaia-ESO

Lack of alpha-enhanced stars in the outer disk!
Similar results seen in local data

- 714 F and G dwarfs in the solar neighbourhood (d<100 pc).
- Calculating stellar orbits to get
 \[R_{\text{mean}} = \frac{R_{\text{min}} + R_{\text{max}}}{2} \]
- Almost no (old) high-alpha stars with \(R_{\text{mean}} > 9 \text{kpc} \)
- Almost no (young) low-alpha stars with \(R_{\text{mean}} < 7 \text{kpc} \)

Sizes of circles prop. to age (larger = older)
Scale-lengths in external galaxies

Luminosity profile fitting

Thick disk scale-lengths are longer than thin disk scale-lengths!
Fig. 17. Generalised abundance ratio histograms for the O, Mg, Si, Ca, and Ti for stars in the interval $-0.7 < \frac{[\text{Fe}/H]}{\text{H}} < -0.35$. Shaded histograms show stars with $T_{\text{eff}} > 5400$ K. The red dash-dotted lines show the fraction of rejected stars when selecting stars with $T_{\text{eff}} < 5400$ K.

Fig. 18. Boxplots showing the distribution of abundance ratios for 16 stars with $T_{\text{eff}} > 5400$ K and an upper age limit of 7 Gyr, in a narrow metallicity range around that of the Sun (± 0.05 dex). Because of large NLTE effects for Ba at higher temperatures, the Ba box has been restricted to stars with $T_{\text{eff}} < 6000$ K as well. In the boxplots the central horizontal line represents the median value. The lower and upper quartiles are represented by the outer edges of the boxes, i.e. the box encloses 50% of the sample. The whiskers extend to the farthest data point that lies within 1.5 times the inter-quartile distance. Those stars that do not fall within the reach of the whiskers are regarded as outliers and are marked by dots.

Fig. 19. $\frac{[\text{Ti}/\text{Fe}]}{\text{Fe}/\text{H}}$ as a function of $\frac{[\text{Fe}/\text{H}]}{\text{H}}$ selected on $T_{\text{D}}/T_{\text{D}}$ as indicated in each panel for stars with $T_{\text{eff}} > 5400$ K. To guide the eye, the red lines outline the thick disk abundance plateau and the decrease in the thin disk abundance ratio, respectively.

Figure 19 shows the $\frac{[\text{Ti}/\text{Fe}]}{\text{Fe}/\text{H}}$ – $\frac{[\text{Fe}/\text{H}]}{\text{H}}$ abundance trends for five different cuts in the thick disk-to-thin disk probability ratios ($T_{\text{D}}/T_{\text{D}}$) that indicate how much likely it is that a star belongs to the thick disk than the thin disk. The top panel shows $T_{\text{D}}/T_{\text{D}} = 1$, equal probabilities $T_{\text{D}}/T_{\text{D}} > 1$, more likely to be thick disk $T_{\text{D}}/T_{\text{D}} < 1$, more likely to be thin disk

Kinematics:

Using Gaussian velocity ellipsoids to calculate probabilities that the stars belong to either the thin or the thick disks

$T_{\text{D}}/T_{\text{D}} = 1$, equal probabilities
$T_{\text{D}}/T_{\text{D}} > 1$, more likely to be thick disk
$T_{\text{D}}/T_{\text{D}} < 1$, more likely to be thin disk

714 nearby dwarfs from Bensby et al, (2014)
Kinematic confusion

Two well-defined, but not perfectly clear trends

714 nearby dwarfs from Bensby et al, (2014)
Ages

Bensby et al, (2014)

Haywood et al, (2011)
Kinematic confusion

Ages seem to better discriminator between thin and thick disk, but ages are rarely available and very difficult to determine

714 nearby dwarfs from Bensby et al, (2014)
Chemistry - GESiDr4, solar cylinder R=1 kpc

Toomre diagram:

Abundance criterion produces kinematical samples that are consistent with what we currently know about the thin and thick disks in the solar neighbourhood:

* alpha-rich disk lagging the alpha-poor disk by some ~40 km/s
* alpha-rich being kinematically hotter
Dashed line:
Fraction of thick-to-thin disk stars using a 10% normalisation in the plane, and 300 pc and 1000 pc scale-heights for the thin and thick disks, respectively.

Green line:
The observed fraction of thick-to-thin disk stars, using alpha-enhancement as selection criterion.
Summary

• Milky Way appears to have two distinct disk populations

• The thick disk has a short scale-length

• Galactic scale-length estimates based on chemistry (alpha-enhancement)

• Scale-lengths in external galaxies based on morphology, giving longer thick disk scale-lengths

• Gaia, in combination with results from the large spectroscopic surveys, will allow us to explore the thin and thick disks in terms of ages - kinematics - chemistry, throughout the Milky Way