

The AMBRE Project Chemical tagging of the Galactic disc

Patrick de Laverny

G. Guilgion, S. Mikolaitis & AMBRE collaborators

Lagrange/OCA, Nice (France)

The Ambre Project

o the second

AMBRE A Galactic Archaeology project based on ESO archived

HR spectra (de Laverny et al., 2013)

<u>Main Goals</u>

- Provide advanced ESO data produtcs
- Homogeneous stellar parametrisation & chemical analysis
- Provide large data samples for Galactic/stellar studies

The Ambre Project

MethodologyParametrisation pipelinefor Vrad, Teff, log(g), [M/H], [α/Fe]

- MATISSE algorithm (Recio-Blanco et al., 2006)
- FGKM-type spectra grid (de Laverny et al. 2012)

Fully parametrised samples

- 6 508 FEROS spectra (Worley et al., 2012)
- 93 116 HARPS spectra (de Pascale+2014)
- 12 403 UVES spectra (Worley et al. 2016)

Warning : several repeats !

The Ambre Project

<u>Chemical tagging</u>

★ On-the-fly line profile fitting (χ² minimisation):
 → Iron-peak element abundances for 4 666 stars (Mikolaitis et al., 2016)

- * GAUGUIN Gauss-Newton method (Bijaoui et al., 2012)
 - → Li abundances for 7 300 stars (Guiglion et al., 2016)

The Ambre Project

Chemical tagging

* On-the-fly line profile fitting (χ^2 minimisation):

→ Iron-peak element abundances for 4 666 stars (Mikolaitis et al., 2016)

 \rightarrow Li abundances for 7 300 stars (Guiglion et al., 2016)

Iron-peak elements

Chemical separation of the Galactic substructures

(Mikolaitis et al., 2016)

Iron-peak elements

Compte mainteres

Zinc – behaves like an α element

Iron-peak elements

Zinc – behaves like an α element : <u>Produced in massive stars</u>

bre

Iron-peak elements

[Mn/Mg] → Mn from SNIa & Mg from SNII

Very good chemical index to disentangle Galactic populations

Iron-peak elements

Comparison with Galactic chemical evolutionary models Mg, Zn & Cu partially well reproduced Larger discrepancies for Mn and Ni

Iron-peak elements

The Ambre Project

<u>Chemical tagging</u>

* On-the-fly line profile fitting (x² minimisation):

Iron-peak element abundances for 4 666 stars (Mikolaitis et al., 2016)

Lithium

Very high quality homogeneous NLTE A(Li) for 2264 dwarfs

Lithium

Very high quality homogeneous NLTE A(Li) for 2264 dwarfs

Lithium

Lithium in Galactic populations : chemical separation

Lithium

Lithium

re

The Ambre Project

- **Summary for lithium**
- Clear distinct Li evolution in the thin and thick discs
- Thin disc: Li in the ISM increases with [M/H] up to Solar values Li decreases at higher metallicities
- Thick disc: Initial ISM Li enrichment ~ Spite Plateau

Small increase with [M/H]

Metal+α-rich stars: More enriched than thin disc stars
 Different chemical history?

The Ambre Project

Summary for iron-peak elements

- Thin/Thick discs well disentangled not only with [α/Fe]
 <u>but also with</u> [Zn/Fe] and [Mn/Mg]
- Very small dispersion in chemical species for both discs
 → efficiency of the radial migration
- Model comparison : lack of some theoretical yields ?

Announcement

Science with Gaia

Astrometry & Astrophysic in the Gaia sky

IAU Symposium 330 Nice, 24-28 april 2017

https://iaus330.sciencesconf.org/

Important datesAbstract submission: december 4, 2016IAU grants: november 1rst,2106