

Disco: Proposal submitting this Friday for Sloan V P.I's Jon Bird & Melissa Ness

- APOGEE spectrograph: **H-band**
- Measure: radial velocities, stellar parameters & 20 abundances, ages
- SNR > 40 (10 min. exposures) precision 0.05 0.1 dex most elements
- Contiguous complete coverage: fully sampled H< 11.3 and 3.7 < G-H < 9.7

Insights from the Galactic Bulge

Melissa Ness, MPIA (Heidelberg, Germany)

The Milky way and its environment, Paris, September 2016

images courtesy of http://hubblesite.org/gallery/

Questions

- What type of bulge does the Milky Way have?
- How and when was the bulge formed?
- How is the bulge related to the Milky Way populations of disk, halo

Questions

- What type of bulge does the Milky Way have?
- How and when was the bulge formed?
- How is the bulge related to the Milky Way populations of disk, halo

Signatures

Questions

- What type of bulge does the Milky Way have?
- How and when was the bulge formed?
- How is the bulge related to the Milky Way populations of disk, halo

Signatures

- Kinematics
- Morphology; density distribution of stars
- Stellar Populations [Fe/H]

The Milky Way: barred galaxy with boxy/peanut, X-shaped bulge

• Bar-like nature (Okuda et al., 1977), Boxy bulge seen in COBE image (1994)

The Milky Way: barred galaxy with boxy/peanut, X-shaped bulge

• Bar-like nature (Okuda et al., 1977), Boxy bulge seen in COBE image (1994)

(1,0) = (0.0, -0.5), Natal et al. 20 McWilliam & Zoccali (2011)

The Milky Way: barred galaxy with boxy/peanut, X-shaped bulge

• Bar-like nature (Okuda et al., 1977), Boxy bulge seen in COBE image (1994)

McWilliam & Zoccali (2011)

The Milky Way: barred galaxy with boxy/peanut, X-shaped bulge

• Bar-like nature (Okuda et al., 1977), Boxy bulge seen in COBE image (1994)

- Bulge is 8kpc away, 27 deg wrt line of sight (Wegg+ 2013)
- Bar extends to 5kpc in the plane (Wegg+ 2015)

(*l,b*) = (0.0, -6.3), Nataf et al. 2011, McWilliam & Zoccali (2011)

The Milky Way: barred galaxy with boxy/peanut, X-shaped bulge

• Bar-like nature (Okuda et al., 1977), Boxy bulge seen in COBE image (1994)

McWilliam & Zoccali (2011)

- Bulge is 8kpc away, 27 deg wrt line of sight (Wegg+ 2013)
- Bar extends to 5kpc in the plane (Wegg+ 2015)

Not atypical

Morphology: signature of formation from the disk

• N-body simulations of disks - form a bar early on ~ 1 Gyr

from Athanassoula (see upcoming talk)

• bar thickens; buckles & forms a boxy bulge

Morphology: signature of formation from the disk

• N-body simulations of disks - form a bar early on ~ 1 Gyr

• bar thickens; buckles & forms a boxy bulge

orbits trace out X-shape (e.g. Patsis 2002)

from Athanassoula (see upcoming talk)

Morphology: signature of formation from the disk

- N-body simulations of disks - form a bar early on ~ 1 Gyr

• bar thickens; buckles & forms a boxy bulge

Boxy Bulges have a distinct kinematic profile

Boxy Bulges have a distinct kinematic profile

Boxy Bulges have a distinct kinematic profile

Rotation Map of the MW 12K APOGEE stars +10K ARGOS stars +6K BRAVA

4kpc < d < 12 kpc

Comparison to N-body models Rotation

Comparison to N-body models Dispersion

4kpc < d < 12 kpc

Comparison to N-body models Dispersion

4kpc < d < 12 kpc

Kinematics of all stars constrain properties of the MW

 Shen et al., 2010 -> With BRAVA data: constrained any classical bulge contribution to be < 8% of disk mass

Kinematics of all stars constrain properties of the MW

- Shen et al., 2010 -> With BRAVA data: constrained any classical bulge contribution to be < 8% of disk mass
- Portail et al., 2016: Constrain pattern speed at 39km/s/kpc ± 3.5 (see talk by M.Portail)

Kinematics of all stars constrain properties of the MW

- Shen et al., 2010 -> With BRAVA data: constrained any classical bulge contribution to be < 8% of disk mass
- Portail et al., 2016: Constrain pattern speed at 39km/s/kpc ± 3.5 (see talk by M.Portail)

But what about more detailed properties? What is break up properties of the bulge by [Fe/H]?

Metallicity distribution in the bulge

Morphology is metallicity dependent

ARGOS Survey: 28,000 star survey of bulge R~ 10,000 K-magnitude distribution of red clump stars f[Fe/H]

Morphology is metallicity dependent

ARGOS Survey: 28,000 star survey of bulge R~ 10,000 K-magnitude distribution of red clump stars f[Fe/H]

Morphology is metallicity dependent

Morphology is metallicity dependent

Morphology is metallicity dependent

Morphology is metallicity dependent

Bimodality in N-body models

Conclusion - the split is generic to the N-body models of boxy/peanut bulges.

Bimodality in N-body models

Conclusion - the split is generic to the N-body models of boxy/peanut bulges. **Split is not seen in the metal-poor bulge population**

Metallicity distribution in the bulge

Metallicity distribution in the bulge

Multiple populations in the bulge

(a) $l \pm 15^{\circ}, b = -5^{\circ}$

(c) $l \pm 15^{\circ}, b = -10^{\circ}$

A: young thin disk B: old thin disk C: thick disk D: metal-poor thick disk+halo E: halo

Ness+ 2013

in talk by K. Freeman

Multiple populations in the bulge

(a) $l \pm 15^{\circ}, b = -5^{\circ}$

(c) $l \pm 15^{\circ}, b = -10^{\circ}$

A: young thin disk B: old thin disk C: thick disk D: metal-poor thick disk+halo E: halo

Ness+ 2013

in talk by K. Freeman

Multiple populations in the bulge

in talk by K. Freeman

MDF gradient & disk-instability formation

MDF gradient & disk-instability formation

Observations

MDF gradient & disk-instability formation

Simulation

Disk instability bulge formation: Initial radial metallicity gradient is mapped into the bulge

Martinez-Valpuesta+ 2013

Observations

Chemical enrichment of bulge from APOGEE

19

70,000 giants from Hayden, M from APOGEE

1.0 < |z| < 2.0 kpc

70,000 giants from Hayden, M from APOGEE

1.0 < |z| < 2.0 kpc

70,000 giants from Hayden, M from APOGEE

1.0 < |z| < 2.0 kpc

 narrow high-α in inner region — star formation and chemical evolution rate was high in the early epoch in the disk

Ness et al., 2013

Ness et al., 2013

Ness et al., 2013

Ness et al., 2013

Ness et al., 2013

Kinematics at [Fe/H] < -0.5 not well reproduced

• Latitude-independent dispersion can not be reproduced in instability models (di Matteo+ 2015)

di Matteo+ 2015

Kinematics at [Fe/H] < -0.5 not well reproduced

• Latitude-independent dispersion can not be reproduced in instability models (di Matteo+ 2015)

di Matteo+ 2015

- Pure N-body (no gas) simulation with 5 stellar populations
- Motivation: to understand the more complicated evolution of a system with gas, feedback, chemistry.

- Pure N-body (no gas) simulation with 5 stellar populations
- Motivation: to understand the more complicated evolution of a system with gas, feedback, chemistry.
 Initial conditions: superposition of
 - Initial conditions: superposition of 5 disks with identical density, but different in-plane kinematics

- Pure N-body (no gas) simulation with 5 stellar populations
- Motivation: to understand the more complicated evolution of a system with gas, feedback, chemistry.
 Initial conditions: superposition of

Initially co-incident populations - separated by the bar

- Kinematic fractionation (Debattista et al., 2016 submitted)
- radially cool populations form a strong bar, vertically thin & peanut shaped
- hotter populations form a weaker bar & become a vertically thicker box

Simulation after 5 Gyr

Initially co-incident populations - separated by the bar

- Kinematic fractionation (Debattista et al., 2016 submitted)
- radially cool populations form a strong bar, vertically thin & peanut shaped
- hotter populations form a weaker bar & become a vertically thicker box

• Use this idea to examine a high-resolution simulation with gas, continuous star formation, feedback, chemistry

- Use this idea to examine a high-resolution simulation with gas, continuous star formation, feedback, chemistry
- The oldest population, formed within the first 0.5 Gyr is already a disk population

- Use this idea to examine a high-resolution simulation with gas, continuous star formation, feedback, chemistry
- The oldest population, formed within the first 0.5 Gyr is already a disk population
- We group stars into different populations based on when they were born

- Use this idea to examine a high-resolution simulation with gas, continuous star formation, feedback, chemistry
- The oldest population, formed within the first 0.5 Gyr is already a disk population
- We group stars into different populations based on when they were born

Now a more sophisticated simulation

25

- Use this idea to examine a high-resolution simulation with gas, continuous star formation, feedback, chemistry
- The oldest population, formed within the first 0.5 Gyr is already a disk population
- We group stars into different populations based on when they were born

 oldest population thick disk

Now a more sophisticated simulation

25

- Use this idea to examine a high-resolution simulation with gas, continuous star formation, feedback, chemistry
- The oldest population, formed within the first 0.5 Gyr is already a disk population
- We group stars into different populations based on when they were born

- oldest population thick disk
- younger population barred and boxy

Debattista, (2016), submitted

• 5% hot population required to reproduce population C in ARGOS [Fe/H] < -0.5

• 5% hot population required to reproduce population C in ARGOS [Fe/H] < -0.5

D,E

The Milky Way bulge has (largely ~ 95%) formed from the disk

The Milky Way bulge has (largely ~ 95%) formed from the disk

- MW bulge is not atypical indicative of a quiet life for many spirals
- Instability formation not all stars participate in X youngest stars most strongly split — oldest stars thick disk
- Can not explain latitude independent velocity dispersion [Fe/H] < -0.5 by disk formation alone — need a 5% kinematically hot population not part of disk formation - early merger origin? halo?

extra

