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Disco: Proposal submitting this Friday for Sloan V
P.I’s Jon Bird & Melissa Ness

Disco: 5 million starsAPOGEE: 150K stars

• APOGEE spectrograph: H-band
• Measure:  radial velocities, stellar parameters & 20 abundances, ages
• SNR > 40 (10 min. exposures) — precision 0.05 - 0.1 dex most elements
• Contiguous complete coverage: fully sampled H< 11.3 and 3.7 < G-H < 9.7



Insights from the 
Galactic Bulge

Melissa Ness, MPIA (Heidelberg, Germany) 

The Milky way and its environment, Paris, September 2016
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mergers, hierarchical formation - classical bulge
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• How is the bulge related to the Milky Way populations of disk, halo
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Questions
• What type of bulge does the Milky Way have? 

• How and when was the bulge formed? 

• How is the bulge related to the Milky Way populations of disk, halo

Signatures
• Kinematics

• Morphology; density distribution of stars

• Stellar Populations - [Fe/H]
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The Milky Way: barred galaxy
with boxy/peanut, X-shaped bulge
• Bar-like nature (Okuda et al., 1977), Boxy bulge seen in COBE image (1994) 
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The Milky Way: barred galaxy
with boxy/peanut, X-shaped bulge
• Bar-like nature (Okuda et al., 1977), Boxy bulge seen in COBE image (1994) 

(l,b) = (0.0, −6.3), Nataf et al. 2011,  
McWilliam & Zoccali (2011) 

• Bulge is 8kpc away, 27 deg wrt line of sight (Wegg+ 2013)
• Bar extends to 5kpc in the plane (Wegg+ 2015)

• Not atypical

5

credit: D. Lang (2016) from Ness & Lang 2016

underlying X-shape
3kpc



Morphology: signature of formation 
from the disk

• N-body simulations of disks - form a bar early on ~ 1 Gyr

from Athanassoula (see upcoming talk)

• bar thickens; buckles & forms a boxy bulge
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Morphology: signature of formation 
from the disk

• N-body simulations of disks - form a bar early on ~ 1 Gyr

from Athanassoula (see upcoming talk)

• bar thickens; buckles & forms a boxy bulge
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• orbits trace out X-shape (e.g. Patsis 2002)
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Boxy Bulges have a distinct kinematic profile

Freeman et al., 2012, Ness et al., 2013 Kunder et al., 2012



4kpc < d < 12 kpc

Rotation Map of the MW
12K APOGEE stars
+10K ARGOS stars

Ness et al., 2016

+6K BRAVA
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4kpc < d < 12 kpc

-10 10-20 20 0 
NGC7332

Falcon Barroso+ 2011

Rotation Map of the MW
12K APOGEE stars
+10K ARGOS stars

Ness et al., 2016

+6K BRAVA
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-10 10-20 20 0 

NGC7332

4kpc < distances < 12 kpc 9

Dispersion Map of the MW



Comparison to N-body models Rotation 

L. Athanassoula

4kpc < d < 12 kpc

Ness et al., (2016)
10

model of 
Athanassoula (2008)
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model of 
Athanassoula (2008)

4kpc < d < 12 kpc
Comparison to N-body models Dispersion 

remarkable agreement with N-body models and also 
kinematic maps of other barred galaxies
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Kinematics of all stars constrain properties of the MW

• Shen et al., 2010 -> With BRAVA data: constrained any classical 
bulge contribution to be < 8% of disk mass  
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Kinematics of all stars constrain properties of the MW

• Shen et al., 2010 -> With BRAVA data: constrained any classical 
bulge contribution to be < 8% of disk mass  

• Portail et al., 2016:  Constrain pattern speed at 39km/s/kpc  ± 3.5
(see talk by M.Portail)

But what about more detailed properties?
What is break up properties of the bulge by [Fe/H]?



ARGOS Bulge MDF:  RG  < 3.5 kpc (Ness+ 2013)

• 13,500 stars 

Metallicity distribution in the bulge

13

Broad MDF: 
also see: Zoccali+ 2008, 
Babusiaux+2010
Hill+2011
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thin disk

thick disk

ARGOS Survey: 28,000 star survey of bulge R~ 10,000
K-magnitude distribution of red clump stars f[Fe/H]
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bulge

thin disk

thick disk

Portail et al., (2015)

ARGOS Survey: 28,000 star survey of bulge R~ 10,000
K-magnitude distribution of red clump stars f[Fe/H]

Only the stars with [Fe/H] > 
-0.5 are part of the boxy/peanut

14

Morphology is metallicity dependent
Freeman+ 2012

b = -7.5° + -10°b = -5°

Bimodality for stars [Fe/H] > -0.5

Ness et al., 2013
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Bimodality in N-body models

NGC 4565

Conclusion -  the split  is generic to the N-body models of boxy/peanut bulges. 

Ness, Athanassoula+ 2012

15

[Fe/H] > -0.5
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Bimodality in N-body models

NGC 4565

Conclusion -  the split  is generic to the N-body models of boxy/peanut bulges. 

Ness, Athanassoula+ 2012

15

[Fe/H] > -0.5

Split is not seen in the metal-poor bulge population
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• 13,500 stars 

Metallicity distribution in the bulge
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Multiple populations in the bulge

17

A: young thin disk
B: old thin disk
C: thick disk
D: metal-poor thick disk+halo
E: halo Ness+ 2013

in talk by K. Freeman

b = -5° b = -10°
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Multiple populations in the bulge

17

A: young thin disk
B: old thin disk
C: thick disk
D: metal-poor thick disk+halo
E: halo Ness+ 2013

[Fe/H] < -0.5 classical 
bulge: very different 
formation history

in talk by K. Freeman

b = -5° b = -10°
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Observations

Gonzalez et al., 2013
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MDF gradient & disk-instability formation

Observations

Gonzalez et al., 2013

Martinez-Valpuesta+ 2013

Simulation
Disk instability bulge formation: 

Initial radial metallicity gradient is 
mapped into the bulge
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Chemical enrichment of bulge from APOGEE

b = -5°

b = -10°
z 

in
cr

ea
si

ng

from Hayden,M
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2020

Chemical enrichment of the bulge in context
70,000 giants from Hayden,M from APOGEE

• smooth transition in [α/Fe] from inner to outer region

• narrow high-α in inner region — star formation and chemical evolution 
rate was high in the early epoch in the disk



Kinematics of Multiple populations
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Kinematics at [Fe/H] < -0.5 not well reproduced 

di Matteo+ 2015

B

C

• Latitude-independent dispersion can not be reproduced in instability models 
(di Matteo+ 2015)

✓
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Interpret different populations within instability formation

• Pure N-body (no gas) simulation with 5 stellar populations
• Motivation: to understand the more complicated evolution of a system with 

gas, feedback, chemistry. • Initial conditions: superposition of 
5 disks with identical density, but 
different in-plane kinematics

Debattista, (2016), submitted (also see di Matteo 2015)



Debattista+ 16 

Co-spatial discs with different 
in-plane kinematics separate at 
bar formation and afterwards: 

Kinematic fractionation 

 23

average
radial velocity
dispersion

average
vertical velocity
dispersion

heights

bar amplitudes
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Interpret different populations within instability formation

• Pure N-body (no gas) simulation with 5 stellar populations
• Motivation: to understand the more complicated evolution of a system with 

gas, feedback, chemistry. • Initial conditions: superposition of 
5 disks with identical density, but 
different in-plane kinematics

Debattista, (2016), submitted (also see di Matteo 2015)
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Initially co-incident populations - separated by the bar
• Kinematic fractionation (Debattista et al., 2016 - submitted) 

• radially cool populations form a strong bar, vertically thin & peanut shaped
• hotter populations form a weaker bar & become a vertically thicker box

Simulation after 5 Gyr



Debattista+ 16 
Initial conditions: superposition of 5 disks 
with identical density but different in-
plane kinematics  

Debattista, (2016), submitted

2424

Initially co-incident populations - separated by the bar
• Kinematic fractionation (Debattista et al., 2016 - submitted) 

• radially cool populations form a strong bar, vertically thin & peanut shaped
• hotter populations form a weaker bar & become a vertically thicker box

Simulation after 5 Gyr
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   UV (2200Å)                  B (4430Å)                    MIR (24 µm) 

Natale+ 15 

Ness+ 14 

Now use this idea to examine a 
high resolution simulation with 
gas, continuous star formation, 
feedback, chemistry etc. 

Nstar ~ 1.1 x 107 particles  

Debattista, (2016), submitted
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Now a more sophisticated simulation
• Use this idea to examine a high-resolution simulation with gas, 

continuous star formation, feedback, chemistry

   UV (2200Å)                  B (4430Å)                    MIR (24 µm) 

Natale+ 15 

Ness+ 14 

Now use this idea to examine a 
high resolution simulation with 
gas, continuous star formation, 
feedback, chemistry etc. 

Nstar ~ 1.1 x 107 particles  

• We group stars into different populations 
based on when they were born

• The oldest population, formed within the first 0.5 
Gyr is already a disk population

Ness+ 2014oldest

youngest

• oldest population 
thick disk

• younger population 
barred and boxy

Debattista, (2016), submitted

oldest

youngest
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The Milky Way bulge has (largely ~ 95%) formed from the disk 
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The Milky Way bulge has (largely ~ 95%) formed from the disk 

• MW bulge is not atypical — indicative of a quiet life for many spirals

• Instability formation — not all stars participate in X — youngest stars 
most strongly split — oldest stars thick disk

• Can not explain latitude independent velocity dispersion [Fe/H] < -0.5 
by disk formation alone — need a 5% kinematically hot population — 
not part of disk formation - early merger origin? halo? 
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Convolved with σ = 0.17 mag. RC width    

Raw    

With better distance estimates: 

1)  It is possible to observe splits also in old populations 

2)  In relatively younger stars, the branches do not overlap 
3232

Model explains split clump f[Fe/H]

• Younger stars are split in their distribution, older stars are not

Convolved 
with a σ = 0.17 
mag RC width

Raw

younger: 6-7 Gyr (6%) older: 9-10 Gyr (60%)

oldest stars
youngest stars

Debattista, (2016), submitted young-thin disk
old-thin disk

thick disk


