Thin vs thick disks Main questions

- → Characteristics of the two disks, mass ratio, scale and height
- → Metallicity vs abundance, degree of rotation
- → Scenarios of formation: when? High z? Turbulent clumpy disks, heating, companions
- \rightarrow Role of the radial migration

Round Table Discussion 20 September 2016

Mass, scale, height (exp)

Thin: Scale: 2.5-3kpc Height: 220-450pc \rightarrow 300±50pc Thick: Scale: 2.2-2.8kpc Height: 700-1450pc \rightarrow 900±180pc M_T/M_t~0.5 Comparable scales (Comeron et al 2012)

Appears that the thick disk is smaller in radius, and of comparable mass (15% surface brightness at Sun)

Solar neighborhood: Haywood et al 2013

Abundance- metallicity relation

Solar neighborhood FGK dwarf stars

Components of the thin disk

GAIA-ESO survey: the metal-poor end of the thin disk is at larger radii,
Elevated height, and higher Vrot
→ Different from inside out?
Quiet evolution, enriched by outflows from the thick disk?

Rojas-Arriagada et al 2016

Bulge or thick disk?

Formation of the thick disk

At least 4 scenarios:

1) Accretion and disruption of satellites (like in the stellar halo)

2) Disk heating due to minor merger (also secular)

3) Radial migration, via resonant scattering

4) In-situ formation from thick gas disk (mergers, or clumpy galaxies)

Disk Heating

Rapid, due to mergers
Slow due to secular evolution

Presence of thin and thick disks as two independent components Thick disks could be due to mergers and/or turbulent ISM at high z

House et al 2011

Too hot in simulations High σ floor Due to low ρ threshold

There is no discontinuity for the thick disk for oldest stars

Sample about 2800 stars

Nordstrom et al. 2004

Disk heating continues after 2 Gyr

Formation in clumpy galaxies

Rapid formation of exponential disk and bulge, through dynamical friction *Noguchi 1999, Bournaud, Elmegreen et al 2007*

Chain galaxies, when edge-on

Turbulent clumpy disks form thick disks with uniform scale height rather than the flared thick disks generated by minor mergers

10kpc

Star Formation History (SFH)

Young α /Fe-rich stars

Bar+spiral: radial migrations

Overlap of resonances

Minchev et al 2010

Azimuthal signature of radial migration

The migration is due to exchange of angular momentum through bars and spirals Azimuthal signatures are seen **during the migration**

GES: Kordopatis et al 2015 6kpc < R < 10kpcIdentification of the thick disk by their high α /Fe, up to Fe/H~0.2 and thin disk down to Fe/H~-0.8

Radial & vertical gradients in α/Fe for thin disk, but not thick Evidence of radial mig

Di Matteo et al 2013 Maps of δ[Fe/H]

Radial migration: circular orbits

Simulations: 2.5 10^{12} M_{\odot} DM-NFW $410^{10} \text{ M}_{\odot} \text{ stars & } 10^{10} \text{ M}_{\odot} \text{ gas}$ Kawata et al 2014

Transient spiral structure \rightarrow streaming motions Exchange of angular momentum \rightarrow radial migration

Circular Orbits $0.7 < L_{x ini} < 0.8$

 $0.8 < L_{z \text{ ini}} < 0.9$ $0.9 < L_{z,ini} < 0.10$

1.0

Streaming motions compatible with **APOGEE** red clump **Only broadening, no gradient¹⁵**