Chemical evolution of the Galactic halo with neutron star mergers based on the sub-halo clustering scenario

Yuhri ISHIMARU (ICU, Japan)

2. Ba in MPS must also come from r-process.
3. Similarly to Ba, we can expect Eu also decreases towards lower metallicity and reaches the lower limit at [Fe/H] ~ -3.5

Candidates of the r-process site(s)
Most of elements heavier than Fe are produced by r-process

1. Core-Collapse Supernovae
 (since Burbidge et al. 1957; Cameron 1957)

2. Neutron Star Mergers
 (since Lattimer et al. 1974; Symbalisty et al. 1982)
But SNe are difficult to produce heavier r-elements...

Wanajo, Janka, Müller (2011, 2014) suggests that electron capture SNe can be the source of lighter r-nuclei, using self consistent exploding model of ECSNe.

ECSNe possibly be the site of trans-Fe including weak r-process, but cannot produce main r-process elements.

Serious Problem in Chem. Evol. with NSMs

Long merger timescale (~100 Myr) would cause the delayed appearance of Eu!

- Argast+ 2004
- Matteucci+ 2013
- Komiyama+ 2014
- Tsujimoto & Shibayama 2014

NSMs with long merger time cannot explain observed scatters in MPS?

Can NS merger be the r-process site?

- Classical formation channel: $t_{NSM} = 100$ Myr – 10 Gyr
- New formation channel: $t_{NSM} = 10^2 – 10^3$ yr
- less than 8% of NSMs (Dominik+13)

BUT

Hierarchical galaxy formation scenario may not exclude neutron star mergers!!
Mass-metallicity Relation

Observations of dwarf galaxies show good correlation between average metallicity and stellar mass, irrespective of their morphologies:

\[\frac{\left< [Fe/H] \right>}{(M_*)} \propto (M_*)^{0.3} \]

Average metallicity indicates the metal productivity (so-called “galactic yield”) of each galaxy.

Massive sub-halos must have higher metal productivity!

Chemical Evolution of Sub-halos with NSMs

Ishimaru, Wanajo, Prantzos 2015

MMR suggests \(\frac{\left< [Fe/H] \right>}{SFR} \propto \frac{SFR}{OFR} \propto (M_*)^{0.3} \)

Therefore, more massive sub-halos have higher SFR or lower OFR.

Two extreme cases are considered:

Case 1:

\[\frac{SFR}{M_{gas}} \propto (M_*)^{0.3}, \quad \frac{OFR}{M_{gas}} = \text{const.} \]

Case 2:

\[\frac{SFR}{M_{gas}} = \text{const.}, \quad \frac{OFR}{M_{gas}} \propto (M_*)^{0.3} \]

Fixed values: \(\frac{SFR}{M_{gas}} = 0.20 \text{ Gyr}^{-1}, \frac{OFR}{M_{gas}} = 1.0 \text{ Gyr}^{-1} \) for \(M^* = 10^8 M_\odot \)

NSM:

- Merger time: 100 Myr : 1 Myr = 95% : 5%
- NSM event rate: 1 per 1000 SNe
- Constant Eu yield: \(2 \times 10^{-6} M_\odot \)
Chemical evolution of the Galactic halo with NSMs

Yuhri ISHIMARU (ICU, Japan)

Metallicity Distribution Functions

Taking into account of the structure formation simulations and MMR, we obtain the sub-halo mass function as: \(\frac{dN}{dM} \propto M^{-1.7} \)

The Galactic halo is regarded as the sum of sub-halos with the weight of the sub-halo mass function.

This scenario can confirm the observed MDF of the Galactic halo.

Case 1: \(\frac{SFR}{M_{\text{gas}}} \propto (M_\ast)^{0.3} \)

Case 2: \(\frac{SFR}{M_{\text{gas}}} = \text{const.} \), \(\frac{OFR}{M_{\text{gas}}} = \text{const.} \)

Eu & Ba Enrichment with NSMs

Case 1: \(\frac{SFR}{M_{\text{gas}}} \propto (M_\ast)^{0.3} \)

Case 2: \(\frac{SFR}{M_{\text{gas}}} = \text{const.} \), \(\frac{OFR}{M_{\text{gas}}} = \text{const.} \)

Plateau of [Ba/Fe] at [Fe/H] \(-3\) possibly come from new formation channel of NSMs with shorter merger time scale

High [r/Fe] stars?

Actually, the total number of NSM in low mass sub-halos must be extremely small!

In case of \(10^4 M_\odot \) sub-halos, the average of total number of NSMs is as low as 0.1.

It means only one sub-halo out of ten suffers NSM!

But stars in such sub-halo must show strong enhancement of Eu!
Stochastic Chemical Evolution of sub-halos with NSMs

Ojima, Ishimaru, Wanajo, & Prantzos in prep.

Based on such scenario, we examine enrichment of each sub-halo by NSMs, using Monte-Carlo method.

According to the sub-halo mass function: $dn/dM \propto M^{-1.7}$, total number of model sub-halos which form the Galactic halo are given as follows:

<table>
<thead>
<tr>
<th>Stellar Mass [M_\odot]</th>
<th>10^4–10^5</th>
<th>10^5–10^6</th>
<th>10^6–10^7</th>
<th>10^7–10^8</th>
<th>10^8–2×10^8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num. of sub-halos</td>
<td>741</td>
<td>147</td>
<td>29</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Mean</td>
<td>0.174</td>
<td>1.75</td>
<td>19.1</td>
<td>184</td>
<td>694</td>
</tr>
</tbody>
</table>

[Eu/Fe] vs. [Fe/H] in sub-halos

- Case 1: $SFR/M_{gas} \propto (M_\odot)^{0.3}$, $OFR/M_{gas} = const.$
- Case 2: $SFR/M_{gas} = const.$, $OFR/M_{gas} \propto (M_\odot)^{0.3}$

Because of high SFR, enhancement of Eu appears at $[Fe/H]=-2$

Some stars show extreme high $[r/Fe]$, because of high OFR

Galactic Halo: sum of sub-halos

Case 1 reproduce large scatters of $[r/Fe]$ in MPS. But the trend is rather flat.

Case 2 shows clear correlation of $[r/Fe]$ with $[Fe/H]$. But the dispersion is small for MPS, and high enhancement of $[Ba/Fe]$ is seen at $[Fe/H]=-2$.

Stars in low mass sub-halos show strong enhancement of Eu!

Stars in massive sub-halos distribute on the average values.
Chemical evolution of the Galactic halo with NSMs

Yuhri ISHIMARU (ICU, Japan)

The best fit model

\[
\frac{\text{SFR}}{M_{\text{gas}}} \propto (M_*)^{0.2} \quad \text{and} \quad \frac{\text{OFR}}{M_{\text{gas}}} \propto (M_*)^{-0.1}
\]

If the Galactic halo was formed from sub-halos with mass-dependent SFR & OFR,
NSMs with long coalescence time can well explain observed [r/Fe] of MPS!

Conclusions

If the Galactic halo are formed from clusterings of sub-halos with mass depend SFH, i.e.,
\[
\frac{\text{SFR}}{M_{\text{gas}}} \propto (M_*)^{0.2} \quad \text{and} \quad \frac{\text{OFR}}{M_{\text{gas}}} \propto (M_*)^{-0.1},
\]
NSMs with long coalescence time, \(\sim 100\text{Myr}\),
well explain [r/Fe] in MPS.

This scenario is also consistent with obs. of UfDs:

\~90%: (Almost) No r-process
\~10%: Strong r-enhanced stars such as Ret II.

These results strongly support NSMs as the site of r-process!

UfD: Reticulum II

\(10^3 - 10^{11} M_\odot\) sub halos
NSMs occur in 9 out of 138 SHs

In particular, this scenario predict
1 out of 10 UfDs (\~10^4 M_\odot) shows extremely high [r/Fe],
which is consistent with observational data of UfDs!