

Fundamental scenario:

21.09.16

Hierarchical Structure Formation

- Larger structures form through successive mergers of smaller structures.
- If baryons are involved: Time
 Observable signatures of past merger events may be retained.

→ Dwarf galaxies as building blocks of massive galaxies.

"Merger Tree"

Potentially traceable; esp. in galactic halos.

Surviving dwarfs: Fossils of galaxy formation and evolution.

Grebel: Milky Way Satellites

Satellite Disruption and Accretion

Satellite disruption:

- may lead to tidal stripping (up to 90% of the satellite's original stellar mass may be lost, but remnant may survive), or
- to complete disruption and ultimately satellite accretion.
- □ More massive satellites experience higher dynamical friction $\frac{d\vec{V}}{dt} \propto -\frac{M\rho\vec{V}}{|\vec{V}|^3}$
- → Due to the mass-metallicity relation, expect more metal-rich stars to end up at smaller radii.

Stellar tidal streams from different dwarf galaxy accretion events lead to highly substructured halo.

Harding

Grebel: Milky Way Satellites

Johnston 3

Stellar Halo Origins

- Stellar halos composed in part of accreted stars and in part of stars formed in situ.
- □ Halos grow from "from inside out".
- Wide variety of satellite accretion histories from smooth growth to discrete events.

accreted stars (ex situ)

in-situ stars

Rodriguez-

Gomez et al. 2016

147 kpc

□ ≤ 5 luminous satellites ($10^8 - 10^9 M_{\odot}$) are the main contributors to stellar halos. Merged > 9 Gyr ago (inner halo). Satellite accretion *mainly* between 1 < z < 3.

The Galaxy Content of the Local Group

Certain or probable members:

 \geq **91 galaxies** within $R_0 \sim 1$ Mpc.

- 3 spiral galaxies (~ 95% mass).
- \geq 88 dwarf and satellite galaxies (typically, $M_V \geq -18$).
- Some satellites have own satellites...

Gas-deficient, late-type dwarf galaxies:79%dwarf elliptical (dEs: 3; 1 cE) & dwarf spheroidal galaxies (dSphs: ≥ 75)

Gas-rich, early-type dwarf galaxies:

dwarf irregular galaxies (dIrrs: 8), transition types (dIrrs/dSphs: 5)

21.09.16

Grebel: Milky Way Satellites

Radial Velocity Dispersion Profiles

- But in dSprs: Radial velocity dispersion profiles as function of galactocentric radius: ~ *flat*.
- Dashed line: Slope expected if mass follows light (King 1966 models); normalized to central dispersions.

High velocity dispersions at large radii (in contrast to King models): dominant and extended DM halos.

Walker 2013

Dynamical M/L ratios increase with decreasing luminosity

21.09.16

DM Content

Mass within $r_{1/2}$ vs. $L_{1/2}$:

M31 satellites

MW ($L \ge 2 \cdot 10^4 L_{\odot}$) \triangle MW ($L < 2 \cdot 10^4 L_{\odot}$)

108

M/L=1000

M/L=100.

M/L=10

Expect corresponding stellar contributions to MW / M31 (outer) halo.

Grebel: Milky Way Satellites

Early Star Formation

In all dwarf galaxies studied *in detail* so far: Old populations ubiquitous.

Early Star Formation

Dwarfs generally continued to form stars after epoch of re-ionization. Some formed most of their stars prior to/during re-ionization, but no evidence for *significant* re-ionization quenching. Grebel & Gallagher 2004; Weisz et al. 2014

Dwarf satellites generally formed bulk of their stellar populations prior to z = 1. Higher-mass galaxies formed larger fraction of their mass at later times ("upsizing").

21.09.16

Grebel: Milky Way Satellites

The Metallicity – Mass Relation

Metallicity-Luminosity relation for the same (old) populations

Metallicity Gradients (Population Gradients) in Dwarfs

Element Abundance Inhomogeneities

Trends in Individual Element Abundance Ratios

Trends in a "Significant Contributor" Equivalent (2)

Very Metal-Poor Stars

Given the low number of stars with [Fe/H] < -3.5 known in MW halo, ultrafaint dSphs are probably important source of such stars.

Now no longer lack of extremely metal-poor stars in dwarfs, but consistency or even "too many" compared to MW halo!

However: well-studied halo stars mainly part of *inner* MW halo.

Inner halo:

Larger progenitor systems may mask contributions from smaller ones.

Outer halo:

Likely small system accretion.

Lai et al. 2011; Carollo et al. 2012

21.09.16

Trends in Individual Element Abundance Ratios

Below [Fe/H] = -3:

$\hfill\square$ $\hfill \alpha$ elements in low-mass and massive galaxies very similar.

□ Iron peak, AI, Na follow trends seen in MW halo.

Below [Fe/H] = –3.5: Similarly low Ba, Sr (n-capture) contents.

Above –3.5: dSphs fainter than Dra similar, while more massive ones show increase in r-process abundances all the way to the solar level.

Tafelmeyer et al. 2010

21.09.16

Grebel: Milky Way Satellites

Stellar Halo (obs.)

Abundant substructure

- Features differ in age & metallicity. Debris?
- Stellar population constraints: No evidence for accretion of young/ very metal-rich stars from massive satellites.

Lower-mass satellite progenitors and/or early accretion preferred.

Grebel: Milky Way Satellites

Bell et al. 2008

Intermediate-Age Populations in the Halo

Tracer: Carbon stars.

- Time domain surveys permit us to use light curves of longperiod variables to infer distances.
- Most C stars associated with Sgr tidal arms, but also several other known (LMC, SMC, GAS, Tri-And-Per, Pisces, Gemini, SG6, etc.) and new features.
- Means to constrain accretion of intermediate-age populations, nature of progenitors, and times.

Huxor & Grebel 2015

Grebel: Milky Way Satellites

Globular clusters contributed by the Sgr dSph

young objects to the Galactic halo, which have no counterparts even among the so-called "young halo globular clusters".

21.09.16

Grebel: Milky Way Satellites

Substantial GC Accretion from Dwarf Galaxies?

Assume: GC metallicity traces host galaxy metallicity at time of formation.

□ Offset in MW GC age-metallicity relation: 0.6 dex.

21.09.16

Grebel: Milky Way Satellites

Dwarf Galaxies – Fossils of Galaxy Evolution

- Old populations ubiquitous. Fractions vary.
 Oldest age-dateable populations coeval within measurement accuracy.
 No evidence of significant cosmological re-ionization quenching.
- \Box Well-defined mass-metallicity relation over ~ 9 decades of galaxian M_{*}.
- □ (Radial) population gradients in metallicity (and kinematics and age).
- ❑ Dwarfs: Element abundance inhomogeneities and spreads, both at a given metallicity or at a given age (→ localized (SN Ia) enrichment).
- \Box [α /Fe] vs. [Fe/H]: Inefficient chemical enrichment, low SFR and SFE.
 - Enrichment before onset of SNe Ia (α knee) correlates with galaxy luminosity.
 - Old extremely metal-poor stars in dSphs:
 ~ consistent with halo EMP stars.
 - Low-metallicity stars in dwarfs and MW in general: abundance consistency. α knee: constraints on dwarf galaxy accretion. Early accretion favored.
 - Little explored: Outer halo; key for future surveys.
 - Eagerly awaited: 6-D phase space data from Gaia!
 Grebel: Milky Way Satellites 29

21.09.16