Planes of satellite galaxies: their dynamics and possible origin Veronica Arias Universidad de los Andes In Collaboration with: Jaime Forero, Geraint Lewis, Magda Guglielmo, Rodrigo Ibata, Nuwanthika Fernando.

Problems with the small scale structure:

- Missing satellites problem
- Too big to fail

Observations: M31

NGC185 AndXXVI AndV 💽 AndXXVO AndXXIVO O AndXVIII AndXXVIL O AndXO AndXVII AndXXI O 0 AndXXIII (AndXVO AndIII 🕐 AndXIX OAndXXO And XI AndXIII 🕥 AndXVI 🕥 AndXIV O AndXXII -5 10 5 0 \$ (dearees)

PAndAS survey, image: Geraint Lewis

Dark Matter only simulations

Aquarius simulations, MPA Garching

Planes of satellite galaxies:

Pawlowski et al. 2012 Linden-Bell 1976 Ibata et al. 2013 Conn et al. 2013

Another small scale problem:

Planes are NOT common in Simulations (e.g. Ibata et el. 2014, Pawlowsky et al. 2013)

Pawlowski et al. 2013

Imagen: Aquarius simulations, MPA Garching

Planes in simulations:

- Millenium II, Aquarius (DM only). Not really
- CLUES Gillet et al. (2015) : one plane but...
- Buck et al 2015, Sawalla et al. 2015 also found planes but...
- Cautun et al. 2015 also but...

But:

Planes tend to be thicker than the M31 plane

They are transient structures

Looking in Illustris simulation:

Arias & Forero, in prep.

Only a number effect?

Arias & Forero, in prep.

More evidence:

M31 satellite plane seems to be co-rotating

Ibata et al. 2013, Collins et al. 2013

Aims:

Study the orbits of M31 satellite galaxies

We know:

- * The positions
- * the LoS velocities

We don not know:

* the tangential velocities

Ibata et al. 2013, Conn et al. 2012, Collins et al 2013, Tollerud et al 2012)

Positions

MW

LoS velocities

MW

We make the following assumption:

If the plane exist and if it is a dynamically coherent long-living structure,

Then

the **velocity vector** should be on the plane.

And that determines the **direction** of the **tangential velocity**.

So

The only unknown is the **magnitude** of the tangential velocity.

Exploring this free parameter:

We find similar orbits for 7 out of 15 satellites...

We find similar orbits for 7 out of 15 satellites...

A quick "test" comparison: With the ELVIS simulation and with some MW satellites

If the common orbits are real, this opens new questions, in particular:

How does such a structure forms?

We are currently:

Working with an optimization code to explore a wider range of possible tangential velocities

Looking deeper into cosmological simulations (Illustris in particular) **If** the common orbits are real, this opens new questions, in particular:

How does such a structure forms?

We are currently:

Working with an optimization code to explore a wider range of possible tangential velocities

Looking deeper into cosmological simulations

(Illustris in particular)

M31 rigid Potential + Point mass approximation for Satellites = Numerical integration of the orbits

$$\Phi_{\text{halo}}(r) = -\frac{\text{GM}_{\text{halo}}}{r} \log\left(\frac{r}{r_{\text{halo}}} + 1\right)$$

$$\Phi_{\text{disk}}(r) = -2\pi G \Sigma_0 r_{\text{disk}}^2 \left[\frac{1 - \exp^{-r/r_{\text{disk}}}}{r}\right]$$

$$\Phi_{\text{bulge}}(r) = -\frac{\text{GM}_{\text{bulge}}}{r_{\text{bulge}} + r}$$

$$M31$$

$$M_{\text{bulge}} = 2.86 \times 10^{10} \,\text{M}_{\odot}$$

$$r_{\text{bulge}} = 0.61 \,\text{kpc}$$

$$M_{\text{disk}} = 8.4 \times 10^{10} \,\text{M}_{\odot}$$

$$r_{\text{disk}} = 5.4 \,\text{kpc}$$

$$\Sigma_0 = 4.6 \times 10^8 \,\text{M}_{\odot} \,\text{kpc}^{-2}$$

$$M_{\text{halo}} = 103.7 \times 10^{10} \,\text{M}_{\odot}$$

$$r_{\text{halo}} = 13.5 \,\text{kpc}$$

Geehan et al. (2006)

Shaya & Tully 2013

Plane(s) in Centaurus A (Tully et al 2015)

FIG. 2.— Edge-on view of planes. Symbol shapes and colors are same as in Fig. 1. Filled histogram: CaZ distribution of galaxies with measured distances. Open: possible group members without distance measurements.

Evidence for Early Filamentary Accretion from the Andromeda Galaxy's Thin Plane of Satellites (Buck,Maccio & Dutton, 2015)

Libeskind et al. 2014

Planes in simulations:

- Millenium II, Aquarius (DM only). Not really
- CLUES Gillet et al. (2015) : one plane but...
- Buck et al 2015, Sawalla et al. 2015 also found planes but...
- Cautun et al. 2015 also but...

Planes found in simulations: (Andrómeda)

Simulaciones (CLUES)

Alineaciones con la estructura a gran escala (observacionales)

Liebeskind et al. 2015

Cosmografía del universo local

Courtois et al 2013

Cosmografía del universo local

Courtois et al 2013

Propiedades de las galaxias satélite de Andrómeda:

THE ASTROPHYSICAL JOURNAL, 768:172 (36pp), 2013 May 10

COLLINS ET AL.

Property	η	$\frac{v_r}{(\mathrm{kms}^{-1})}$	$\sigma_v (\mathrm{kms^{-1}})$	$\frac{M_{\rm half}}{(10^7 M_{\odot})}$	$\frac{[M/L]_{\text{half}}}{(M_{\odot}/L_{\odot})}$	[Fe/H] _{spec}
And V	2.0	-391.5 ± 2.7	$12.2^{+2.5}_{-1.9}$	2.6+0.66	88.4+22.3	-2.0 ± 0.1
And VI	2.5	-339.8 ± 1.8	$12.4^{+1.5}_{-1.3}$	4.7 ± 0.7	27.5+4.2	-1.5 ± 0.1
And XI	2.5	$-427.5^{+3.5}_{-3.4}$	7.6+4.0(*)	0.53+0.28	216+115	-1.8 ± 0.1
And XII	2.5	-557.1 ± 1.7	0.0+4.0	0.0+0.3	0.0+194	-2.2 ± 0.2
And XIII	2.5	-204.8 ± 4.9	0.0+8.1(*)	0.0+0.7	0.0+330	-1.7 ± 0.3
And XVII	2.5	$-251.6^{+1.8}_{-2.0}$	$2.9^{+2.2}_{-1.9}$	0.13+0.22	12+22	-1.7 ± 0.2
And XVIII	2.5	-346.8 ± 2.0	0.0+2.7	0.0+0.14	0+5	-1.4 ± 0.3
And XIX	2.0	$-111.6^{+1.6}_{-1.4}$	$4.7^{+1.6}_{-1.4}$	$1.9^{+0.65}_{-0.66}$	84.3+37	-1.8 ± 0.3
And XX	2.5	$-456.2^{+3.1}_{-3.6}$	$7.1^{+3.9(*)}_{-2.5}$	0.33+0.20	238.1+147.6	-2.2 ± 0.4
And XXI	5.0	-362.5 ± 0.9	$4.5^{+1.2}_{-1.0}$	$0.99^{+0.28}_{-0.24}$	25.4+9.4	-1.8 ± 0.1
And XXII	2.0	-129.8 ± 2.0	$2.8^{+1.9}_{-1.4}$	$0.11^{+0.08}_{-0.06}$	$76.4^{+58.4}_{-48.1}$	-1.8 ± 0.6
And XXIII	4.0	-237.7 ± 1.2	7.1 ± 1.0	2.9 ± 4.4	58.5 ± 36.2	-2.2 ± 0.3
And XXIV	1.5	-128.2 ± 5.2	0.0+7.3(*)	$0.4^{+0.7}_{-0.4}$	82 ⁺¹⁵⁷ -82	-1.8 ± 0.3
And XXV	2.5	-107.8 ± 1.0	$3.0^{+1.2}_{-1.1}$	$0.34^{+0.14}_{-0.12}$	$10.3^{+7.0}_{-6.7}$	-1.9 ± 0.1
And XXVI	3.0	$-261.6^{+3.0}_{-2.8}$	8.6 ^{+2.8(*)}	$0.96^{+0.43}_{-0.34}$	325+243	-1.8 ± 0.5
And XXVII	1.5	$-539.6^{+4.7}_{-4.5}$	14.8+4.3	8.3+2.8	1391+1039	-2.1 ± 0.5
And XXVIII	2.5	-326.2 ± 2.7	6.6+2.9	0.53+0.28	51+30	-2.1 ± 0.3
And XXX (Cass II)	2.0	$-139.8^{+6.0}_{-6.6}$	$11.8^{+7.7}_{-4.7}$	$2.2^{+1.4}_{-0.9}$	308+269	-1.7 ± 0.4

Table 4 Kinematic Properties of Andromeda dSph Galaxies as Derived within This Work, from Keck I/LRIS, and Keck II/DEIMOS Data

Notes. (*) indicates velocity dispersions derived from fewer than eight members stars, and require confirmation from further follow-up.