r-process enrichment in the Milky Way and nearby dwarf galaxies

The Milky Way and its environment, at IAP on September 21, 2016

We were measuring *r*-process abundance in the Draco dSph galaxy from here May 30, 2016 @Matsuno

Talk outline

✓ narrowing down the astrophysical site of *r*-process from dwarf galaxies

✓ event frequency estimated from the Milky Way

✓ early *r*-process enrichment in dwarf galaxies

✓ short-radioactive nuclei ²⁴⁴Pu evolution in the solar system

What is the astrophysical object producing *r*-nuclides in the Universe?

Since *r*-process nucleosynthesis demands an extremely neutron-rich environment, the possible astrophysical sites are limited to two events

core-collapse supernova (CCSN)

neutron star (NS) merger

Note! the Milky way experiences more than 2×10^8 *NS mergers.*

I. faint (small-mass) dwarf galaxies

NS merger rate deduced from the Milky Way

Very early *r*-process enrichment in faint dwarf galaxies

What requires for Eu producer in the early faint galaxies?

✓ more frequent than NS mergers, but much less frequent than CCSNe

 \checkmark a selective operation only in low-metallicity stars

a promising candidate = magneto-rotational SNe (MR-SNe)

an explosion triggered by fast rotations and high magnetic fields

the emergence of MR-SNe is inclined toward very low-metallicity stars in which the rotational velocity is expected to be high

A unified scheme of r-process enrichment in dwarf galaxies

last *r*-process event at the early solar system from short-lived radioactive nuclei

²⁴⁴Pu evolution in the solar system

1. the ESS from meteorites

✓ 244 Pu/ 238 U ~ 0.008 at 4570Myr ago from meteorites

2. the present from deep sea

✓ current abundance of ²⁴⁴Pu from deep sea measurement

Wallner et al. 2015

very low, compared with the early solar system

~0.15 × ESS value from a sediment ~0.01 × ESS value from a crust

FeMn crust with a total thickness of 25cm was sampled in 1976 from the Pacific Ocean at 4,830m water depth.

Table 1 | ²⁴⁴Pu detector events and corresponding ISM flux compared with galactic chemical models assuming steady state.

Deep-sea archive	Time period (My)	Sample area (cm ²)	Sample mass (g)	Integral sensitivity (eff. × area × time period) (cm ² My)	²⁴⁴ Pu detector events (2σ limit)*	²⁴⁴ Pu flux into terrestrial archive (atoms per cm ² per My)	²⁴⁴ Pu flux ISM at Earth orbit (atoms per cm ² per My) [†]
Crust_modern	0-0.5	227.2	80	0.006	16	-	-
Layer X	Blank	~100	364	-	0	_	-
Layer 2	0.5-5	227.2	473	0.016	0 (<3)	<188	<3,500
Layer 3	5-12	227.2	822	0.075	1(<5)	13 ⁺⁵³ / ₋₁₂ (<66)	247 + 1000
Layer 4	12-25	142.2	614	0.060	1(<5)	17 ±% (<83)	320 +1,250
Crust	0.5-25	182	1,909	0.151	2 (<6.7)	13 : 13 (< 44)	250 + 590
Sediment	0.53-2.17	4.9	101	0.0013	1 (<5)	750±3800	3,000±½,8%
Model and satellite data ¹ Steady-state model and ISM flux data at 1 AU from satellite Cassini							20,000-160,000

How to calculate ²⁴⁴Pu evolution

step1. the ejected mass of ²⁴⁴Pu per volume per event

meteoritic abundances of **short-lived radioactive nuclei** hold **the information on one last** *r***-process event**

 $^{244}Pu/^{238}U\sim 0.008$ & meteoritic abundance of ^{238}U

244Pu=2×10⁻¹² : mass fraction by one event in the ISM

step 2. the total event number till the solar system formation

solar abundances (meteorites) of **stable nuclei** hold **the information on integration of the past**

an ejected mass of Eu per one event per cm³= 2.5×10^{-11}

3.7×10⁻¹⁰/2.5×10⁻¹¹~15

step 3. dating of individual events using a star formation history

star formation history: never constant but has a bursting feature

the frequency of *r*-process production event

by counting the number of supernovae

for the current interval of ~400Myr

step 1. the present-day local supernova rate

✓ from the local present-day star formation rate: $0.48-1.1M_{\odot}/\text{Gyr/pc}^2$

→ one per 2.1-4.8 Myr per 100 pc-radius disk region

from ⁶⁰Fe detection in deep sea crusts (Wallner et al. 2016)
Two supernovae occurs at 1.5-3.2 Myr ago and 6.5-8.7 Myr ago at distances up to 100 pc

one CCSN per 4Myr per 100pc-radius disk region

step 2. the volume where a NSM propagates

the volume contains gas of $\sim 3.5 \times 10^6 \text{ M}_{\odot} \leftarrow 244 \text{Pu}$ density $\sim 370 \text{ pc-radius disk region} \sim 100 \text{ x SNR}$

the number of CCSNe within 370pc-radius for 400 Myr: ~1400 CCSNe

NSM rate = one per \sim 1400 CCSNe at the current solar system

Conclusions

✓ narrowing down the astrophysical site of *r*-process from dwarf galaxies

Answer: neutron star mergers

✓ event frequency estimated from the Milky Way

Answer: one per ~1400 core-collapse supernovae = ~16 Myr⁻¹ in the Milky Way

 \checkmark the site of *r*-process in the early dwarf galaxies

Answer: magneto-rotational supernovae

 \checkmark^{244} Pu evolution in the solar system

traces a local star formation history and confirms "neutron star mergers as the site of r-process"