The Latte Project: The Milky Way on FIRE

Andrew Wetzel Caltech-Carnegie Fellow

with Phil Hopkins, Shea Garrison-Kimmel, Robyn Sanderson, Xiangcheng Ma, Ji-hoon Kim, Dusan Keres, Claude-Andre Faucher-Giguere, Eliot Quataert

The Carnegie Observatories

cosmological zoom-in simulation to achieve high resolution

model for gas and star formation

- High resolution to capture structure of multi-phase inter-stellar medium
 - $^{\circ}$ m_{gas/star} = 7070 M_{sun}
 - $h_{gas} = 1 \text{ pc (min)}$
 - hightarrow hstar = 4 pc
 - h_{dm} = 20 pc

- Gas cooling from atoms, molecules, and 9 metals down to 10 K
- Star formation only in self-gravitating molecular clouds with n > 1000 atom/cm³

model for stellar feedback

- Heating:
 - Supernovae: core-collapse (II) and Ia
 - Stellar Winds: massive O-stars & AGB stars
 - Photoionization (HII regions) + photoelectric heating
- Explicit Momentum Flux:
 - Radiation Pressure

$$\dot{P}_{\rm rad} \sim \frac{L}{c} \left(1 + \tau_{\rm IR}\right)$$

- Supernovae
 - $\dot{P}_{\rm SNe} \sim \dot{E}_{\rm SNe} \, v_{\rm ejecta}^{-1}$
- Stellar Winds $\dot{P}_{\rm W} \sim \dot{M} v_{\rm wind}$

stellar scale

galaxy scale

Caltech - Carnegie

host galaxy at z = 0

10 kpc

10 kpc

 $M_{star} = 7 \times 10^{10} M_{sun}$

successful formation of 'thin' and 'thick' stellar disk similar to Milky Way

thick —> thin disk formation

stars at formation

Ma, Hopkins, Wetzel et al 2016

stellar disk was flared at formation because gas disk is flared

Caltech - Carnegie

The Latte Project: the Milky Way on FIRE

population of satellite dwarf galaxies

stellar masses of satellite galaxies

Andrew Wetzel

What causes the lack of (massive) satellite dwarf galaxies?

- Stellar feedback drives significant gas outflows/inflows that dynamically heat dark matter, reducing the inner density (cores)
- 2. Stellar disk of Milky Way-mass host galaxy destroys satellites (via tidal shocking, etc)

with Robyn Sanderson (Caltech) and Sanjib Sharma (Sydney): using Galaxia (Sharma et al 2011) to generate synthetic stellar catalogs to mock of your favorite survey (Gaia, Gaia-ESO, APOGEE, GALAH, etc)

The Latte Project: the Milky Way on FIRE

Caltech - Carnegie

