APOGEE: 150K stars
Disco: Proposal submitting this Friday for Sloan V
P.I’s Jon Bird & Melissa Ness

APOGEE: 150K stars
Disco: Proposal submitting this Friday for Sloan V

P.I’s Jon Bird & Melissa Ness

APOGEE: 150K stars

Disco: 5 million stars
Disco: Proposal submitting this Friday for Sloan V

P.I’s Jon Bird & Melissa Ness

APOGEE: 150K stars

• APOGEE spectrograph: **H-band**
• Measure: radial velocities, stellar parameters & 20 abundances, ages
• SNR > 40 (10 min. exposures) — precision 0.05 - 0.1 dex most elements
• Contiguous complete coverage: fully sampled $H < 11.3$ and $3.7 < G-H < 9.7$

Disco: 5 million stars

• Measurement of 5 million stars
• 150K stars with APOGEE spectrograph
• Contiguous complete coverage

Images:

- Left: APOGEE spectrograph map
- Right: Disco coverage map

Legend:

- Color scale indicating star density
- Contiguous complete coverage marked

Notes:

- Precision and coverage details for both projects
- Collaboration and proposal highlights

Insights from the Galactic Bulge

Melissa Ness, MPIA (Heidelberg, Germany)

The Milky way and its environment, Paris, September 2016
Images courtesy of http://hubblesite.org/gallery/
mergers, hierarchical formation - classical bulge

images courtesy of http://hubblesite.org/gallery/
mergers, hierarchical formation - classical bulge

disk instability

images courtesy of http://hubblesite.org/gallery/
Questions
Questions

• What type of bulge does the Milky Way have?
• How and when was the bulge formed?
• How is the bulge related to the Milky Way populations of disk, halo
Questions

• What type of bulge does the Milky Way have?
• How and when was the bulge formed?
• How is the bulge related to the Milky Way populations of disk, halo

Signatures
Questions

• What type of bulge does the Milky Way have?
• How and when was the bulge formed?
• How is the bulge related to the Milky Way populations of disk, halo

Signatures

• Kinematics
• Morphology; density distribution of stars
• Stellar Populations - [Fe/H]
The Milky Way: barred galaxy with boxy/peanut, X-shaped bulge

• Bar-like nature (Okuda et al., 1977), Boxy bulge seen in COBE image (1994)
The Milky Way: barred galaxy with boxy/peanut, X-shaped bulge

- Bar-like nature (Okuda et al., 1977), Boxy bulge seen in COBE image (1994)

$(l,b) = (0.0, -6.3)$, Nataf et al. 2011, McWilliam & Zoccali (2011)
The Milky Way: barred galaxy with boxy/peanut, X-shaped bulge

- Bar-like nature (Okuda et al., 1977), Boxy bulge seen in COBE image (1994)

\[(l,b) = (0.0, -6.3), \text{ Nataf et al. 2011, McWilliam & Zoccali (2011)}\]
The Milky Way: barred galaxy with boxy/peanut, X-shaped bulge

- Bar-like nature (Okuda et al., 1977), Boxy bulge seen in COBE image (1994)
- (l,b) = (0.0, -6.3), Nataf et al. 2011, McWilliam & Zoccali (2011)

- Bulge is 8kpc away, 27 deg wrt line of sight (Wegg+ 2013)
- Bar extends to 5kpc in the plane (Wegg+ 2015)
The Milky Way: barred galaxy with boxy/peanut, X-shaped bulge

- Bar-like nature (Okuda et al., 1977), Boxy bulge seen in COBE image (1994)
- Bulge is 8kpc away, 27 deg wrt line of sight (Wegg+ 2013)
- Bar extends to 5kpc in the plane (Wegg+ 2015)
- Not atypical

$(l,b) = (0.0, -6.3)$, Nataf et al. 2011,
McWilliam & Zoccali (2011)

Bureau 2006
Morphology: signature of formation from the disk

- N-body simulations of disks - form a bar early on ~ 1 Gyr
- bar thickens; buckles & forms a boxy bulge

from Athanassoula (see upcoming talk)
Morphology: signature of formation from the disk

- N-body simulations of disks - form a bar early on ~ 1 Gyr
 - bar thickens; buckles & forms a boxy bulge
 - orbits trace out X-shape (e.g. Patsis 2002)

from Athanassoula (see upcoming talk)
Morphology: signature of formation from the disk

- N-body simulations of disks - form a bar early on ~ 1 Gyr
- bar thickens; buckles & forms a boxy bulge
- orbits trace out X-shape (e.g. Patsis 2002)

from Athanassoula (see upcoming talk)
Boxy Bulges have a distinct kinematic profile

ARGOS (17K stars) + BRAVA (10K stars)

Freeman et al., 2012, Ness et al., 2013
Kunder et al., 2012
Boxy Bulges have a distinct kinematic profile

Freeman et al., 2012, Ness et al., 2013
Kunder et al., 2012
Boxy Bulges have a distinct kinematic profile

ARGOS (17K stars) + BRAVA (10K stars)

Freeman et al., 2012, Ness et al., 2013

Kunder et al., 2012
Rotation Map of the MW
12K APOGEE stars
+10K ARGOS stars
+6K BRAVA
4kpc < d < 12 kpc

Ness et al., 2016
Rotation Map of the MW

- 12K APOGEE stars
- +10K ARGOS stars
- +6K BRAVA

Ness et al., 2016
Dispersion Map of the MW

4kpc < distances < 12 kpc
Comparison to N-body models Rotation

model of Athanassoula (2008)

Ness et al., (2016)
Comparison to N-body models Dispersion

4kpc < d < 12 kpc

model of Athanassoula (2008)
Comparison to N-body models Dispersion

4kpc < d < 12 kpc

remarkable agreement with N-body models and also kinematic maps of other barred galaxies
Kinematics of all stars constrain properties of the MW

- Shen et al., 2010 -> With BRAVA data: constrained any classical bulge contribution to be < 8% of disk mass
Kinematics of all stars constrain properties of the MW

- Shen et al., 2010 -> With BRAVA data: constrained any classical bulge contribution to be < 8% of disk mass

- Portail et al., 2016: Constrain pattern speed at 39km/s/kpc ± 3.5 (see talk by M.Portail)
Kinematics of all stars constrain properties of the MW

- Shen et al., 2010 -> With BRAVA data: constrained any classical bulge contribution to be < 8% of disk mass

- Portail et al., 2016: Constrain pattern speed at 39km/s/kpc ± 3.5 (see talk by M.Portail)

But what about more detailed properties?
What is break up properties of the bulge by [Fe/H]?
Metallicity distribution in the bulge

ARGOS Bulge MDF: $R_G < 3.5$ kpc (Ness+ 2013)

- 13,500 stars

Broad MDF:
also see: Zoccali+ 2008, Babusiaux+2010, Hill+2011

Fraction of Stars

[Fe/H]
Morphology is metallicity dependent

ARGOS Survey: 28,000 star survey of bulge R~ 10,000
K-magnitude distribution of red clump stars $\int [\text{Fe/H}]$
Morphology is metallicity dependent

ARGOS Survey: 28,000 star survey of bulge $R \sim 10,000$
K-magnitude distribution of red clump stars $[\text{Fe/H}]$
Morphology is metallicity dependent

ARGOS Survey: 28,000 star survey of bulge R~10,000
K-magnitude distribution of red clump stars $\int[Fe/H]$
Morphology is metallicity dependent

Portail et al., (2015)

ARGOS Survey: 28,000 star survey of bulge R~ 10,000 K-magnitude distribution of red clump stars \(\int [\text{Fe/H}] \)

Freeman+ 2012
Morphology is metallicity dependent

ARGOS Survey: 28,000 star survey of bulge R~10,000
K-magnitude distribution of red clump stars f[Fe/H]

Morphology is metallicity dependent

Freeman+ 2012

ARGOS Survey: 28,000 star survey of bulge R~10,000
K-magnitude distribution of red clump stars f[Fe/H]

Bimodality for stars [Fe/H] > -0.5

Ness et al., 2013

Portail et al., (2015)
Morphology is metallicity dependent

ARGOS Survey: 28,000 star survey of bulge R~ 10,000 K-magnitude distribution of red clump stars $f([\text{Fe/H}]$)

Only the stars with $[\text{Fe/H}] > -0.5$ are part of the boxy/peanut

Portail et al., (2015)

Freeman+ 2012

Bimodality for stars $[\text{Fe/H}] > -0.5$

Ness et al., 2013

Only the stars with $[\text{Fe/H}] > -0.5$ are part of the boxy/peanut
Bimodality in N-body models

Ness, Athanassoula+ 2012

Conclusion - the split is generic to the N-body models of boxy/peanut bulges.
Bimodality in N-body models

Ness, Athanassoula+ 2012

Conclusion - the split is generic to the N-body models of boxy/peanut bulges.

Split is not seen in the metal-poor bulge population
Metallicity distribution in the bulge

ARGOS Bulge MDF: $R_G < 3.5$ kpc (Ness+ 2013)

- 13,500 stars

![Metallicity distribution in the bulge](chart.png)
Metallicity distribution in the bulge

ARGOS Bulge MDF: $R_G < 3.5$ kpc (Ness+ 2013)

• 13,500 stars
Multiple populations in the bulge

A: young thin disk
B: old thin disk
C: thick disk
D: metal-poor thick disk+halo
E: halo

(a) $l \pm 15^\circ, b = -5^\circ$

(b) $b = -10^\circ$

(c) $l \pm 15^\circ, b = -10^\circ$

Ness+ 2013

in talk by K. Freeman
Multiple populations in the bulge

A: young thin disk
B: old thin disk
C: thick disk
D: metal-poor thick disk + halo
E: halo

(a) $l \pm 15^\circ, b = -5^\circ$
(b) $l \pm 15^\circ, b = -10^\circ$

Ness+ 2013

in talk by K. Freeman
Multiple populations in the bulge

A: young thin disk
B: old thin disk
C: thick disk
D: metal-poor thick disk + halo
E: halo

\[b = -5^\circ \]

\[b = -10^\circ \]

\([\text{Fe/H}] < -0.5\] classical bulge: very different formation history

Ness+ 2013
MDF gradient & disk-instability formation
MDF gradient & disk-instability formation

Observations

Gonzalez et al., 2013
MDF gradient & disk-instability formation

Observations

Gonzalez et al., 2013

Simulation

Disk instability bulge formation:
Initial radial metallicity gradient is mapped into the bulge

Martinez-Valpuesta+ 2013
Chemical enrichment of bulge from APOGEE

from Hayden, M
Chemical enrichment of the bulge in context
Chemical enrichment of the bulge in context

70,000 giants from Hayden, M from APOGEE
Chemical enrichment of the bulge in context

70,000 giants from Hayden, M from APOGEE

- smooth transition in $[\alpha/Fe]$ from inner to outer region
Chemical enrichment of the bulge in context

70,000 giants from Hayden, M from APOGEE

- smooth transition in $[\alpha/Fe]$ from inner to outer region
- narrow high-α in inner region — star formation and chemical evolution rate was high in the early epoch in the disk
Kinematics of Multiple populations

Ness et al., 2013
Kinematics of Multiple populations

Ness et al., 2013
Kinematics of Multiple populations

A. [Fe/H] > 0
B. 0 > [Fe/H] > -0.5
C. -0.5 > [Fe/H] > -1.0
D. [Fe/H] < -1.0

Ness et al., 2013
Kinematics of Multiple populations

Ness et al., 2013
Kinematics of Multiple populations

A

B

C

D/E

Ness et al., 2013
Kinematics at $[\text{Fe/H}] < -0.5$ not well reproduced

- Latitude-independent dispersion can not be reproduced in instability models (di Matteo+ 2015)
Kinematics at $[\text{Fe/H}] < -0.5$ not well reproduced

- Latitude-independent dispersion cannot be reproduced in instability models (di Matteo+ 2015)

\[
\begin{align*}
\text{B} & \quad \text{Latitude-independent dispersion cannot be reproduced in instability models (di Matteo+ 2015)} \\
\text{C} & \quad \text{Latitude-independent dispersion cannot be reproduced in instability models (di Matteo+ 2015)}
\end{align*}
\]
Interpret different populations within instability formation
Debattista, (2016), submitted (also see di Matteo 2015)
Interpret different populations within instability formation

Debattista, (2016), submitted (also see di Matteo 2015)

- Pure N-body (no gas) simulation with 5 stellar populations
- Motivation: to understand the more complicated evolution of a system with gas, feedback, chemistry.
Interpret different populations within instability formation
Debattista, (2016), submitted (also see di Matteo 2015)

- Pure N-body (no gas) simulation with 5 stellar populations
- Motivation: to understand the more complicated evolution of a system with gas, feedback, chemistry.

- Initial conditions: superposition of 5 disks with identical density, but different in-plane kinematics
Interpret different populations within instability formation
Debattista, (2016), submitted (also see di Matteo 2015)

- Pure N-body (no gas) simulation with 5 stellar populations
- Motivation: to understand the more complicated evolution of a system with gas, feedback, chemistry.

- Initial conditions: superposition of 5 disks with identical density, but different in-plane kinematics
Initially co-incident populations - separated by the bar

- **Kinematic fractionation (Debattista et al., 2016 - submitted)**
- radially cool populations form a strong bar, vertically thin & peanut shaped
- hotter populations form a weaker bar & become a vertically thicker box

Simulation after 5 Gyr
Initially co-incident populations - separated by the bar

- Kinematic fractionation (Debattista et al., 2016 - submitted)
- radially cool populations form a strong bar, vertically thin & peanut shaped
- hotter populations form a weaker bar & become a vertically thicker box

Simulation after 5 Gyr

Debattista, (2016), submitted
Now a more sophisticated simulation

Debattista, (2016), submitted
Now a more sophisticated simulation

• Use this idea to examine a high-resolution simulation with gas, continuous star formation, feedback, chemistry

Debattista, (2016), submitted
Now a more sophisticated simulation

- Use this idea to examine a high-resolution simulation with gas, continuous star formation, feedback, chemistry
- The oldest population, formed within the first 0.5 Gyr is already a disk population

Debattista, (2016), submitted
Now a more sophisticated simulation

• Use this idea to examine a high-resolution simulation with gas, continuous star formation, feedback, chemistry
• The oldest population, formed within the first 0.5 Gyr is already a disk population
• We group stars into different populations based on when they were born

Debattista, (2016), submitted
Now a more sophisticated simulation

• Use this idea to examine a high-resolution simulation with gas, continuous star formation, feedback, chemistry
• The oldest population, formed within the first 0.5 Gyr is already a disk population
• We group stars into different populations based on when they were born

Ness+ 2014

Debattista, (2016), submitted
Now a more sophisticated simulation

- Use this idea to examine a high-resolution simulation with gas, continuous star formation, feedback, chemistry
- The oldest population, formed within the first 0.5 Gyr is already a disk population
- We group stars into different populations based on when they were born

We group stars into different populations based on when they were born

- The oldest population, formed within the first 0.5 Gyr is already a disk population

Debattista, (2016), submitted

Ness+ 2014

- oldest population thick disk
Now a more sophisticated simulation

- Use this idea to examine a high-resolution simulation with gas, continuous star formation, feedback, chemistry
- The oldest population, formed within the first 0.5 Gyr is already a disk population
- We group stars into different populations based on when they were born

Ness+ 2014

- oldest population thick disk
- younger population barred and boxy

Debattista, (2016), submitted
Debattista, (2016), submitted
Model explains split clump $f[\text{Fe/H}]$

Convolved with a $\sigma = 0.17$ mag RC width

Debattista, (2016), submitted
Model explains split clump $f([\text{Fe/H}]$)

Debattista, (2016), submitted

- Younger stars are split in their distribution, older stars are not

Convolved with a $\sigma = 0.17$ mag RC width

![Graph showing distribution of stars in different age groups]
Model explains split clump $f[\text{Fe/H}]$

Convolved with $\sigma = 0.17$ mag RC width

Debattista, (2016), submitted

- Younger stars are split in their distribution, older stars are not
Kinematics as $f([\text{Fe/H}])$

Debattista, (2016), submitted
Kinematics as $f([\text{Fe/H}])$

Debattista, (2016), submitted
Kinematics as $f([\text{Fe/H}])$
Kinematics as $f(\text{[Fe/H]})$

- 5% hot population required to reproduce population C in ARGOS $\text{[Fe/H]} < -0.5$

All stars Fe/H > -0.5 [Fe/H] < -0.5

• 5% hot population required to reproduce population C in ARGOS $\text{[Fe/H]} < -0.5$

Debattista, (2016), submitted
Kinematics as $f([\text{Fe/H}])$

- 5% hot population required to reproduce population C in ARGOS $[\text{Fe/H}] < -0.5$

All stars Fe/H > -0.5 [Fe/H] < -0.5

V$_{\text{GC}}$ [kms$^{-1}$] σ$_{\text{GC}}$ [kms$^{-1}$]

D,E

500 stars (28%)

[Fe/H] < -1.0

Galactic Longitude (deg)
Kinematics as $f([\text{Fe/H}])$

- 5% hot population required to reproduce population C in ARGOS $[\text{Fe/H}] < -0.5$

All stars \quad Fe/H > -0.5 \quad [Fe/H] < -0.5 \quad [Fe/H] < -0.5

A,B \quad C \quad C+spheroid

Debattista, (2016), submitted
The Milky Way bulge has (largely ~ 95%) formed from the disk.
The Milky Way bulge has (largely ~ 95%) formed from the disk

- MW bulge is not atypical — indicative of a quiet life for many spirals
- Instability formation — not all stars participate in X — *youngest stars* most strongly split — *oldest stars* thick disk
- Can not explain latitude independent velocity dispersion [Fe/H] < -0.5 by disk formation alone — need a 5% kinematically hot population — not part of disk formation - early merger origin? halo?
extra
Model explains split clump $f[\text{Fe/H}]$

Debattista, (2016), submitted
Model explains split clump $f[\text{Fe/H}]$

younger: 6-7 Gyr (6%)
older: 9-10 Gyr (60%)

Debattista, (2016), submitted
Model explains split clump f[Fe/H]

Debattista, (2016), submitted
Model explains split clump $f[\text{Fe/H}]$

Debattista, (2016), submitted

- Younger stars are split in their distribution, older stars are not

Debattista+ 16

Convolved with $\sigma = 0.17$ mag RC width

Raw

With better distance estimates:

1) It is possible to observe splits also in old populations
2) In relatively younger stars, the branches do not overlap

Model explains split clump $f[\text{Fe/H}]$

younger: 6-7 Gyr (6%)
older: 9-10 Gyr (60%)
Model explains split clump $f([\text{Fe/H}]$)

Younger: 6-7 Gyr (6%)

Older: 9-10 Gyr (60%)

- Younger stars are split in their distribution, older stars are not

Debattista, (2016), submitted
Model explains split clump \(f[\text{Fe/H}]\)

- Younger stars are split in their distribution, older stars are not

Debattista, (2016), submitted

- With better distance estimates:
 1. It is possible to observe splits also in old populations
 2. In relatively younger stars, the branches do not overlap

\[\sigma = 0.17 \text{ mag RC width}\]

\[\text{Youngest stars: 6-7 Gyr (6\%)} \quad \text{Younger stars: 6-7 Gyr (6\%)} \quad \text{Older stars: 9-10 Gyr (60\%)} \quad \text{Oldest stars: 9-10 Gyr (60\%)}\]
Model explains split clump $f[\text{Fe/H}]$

- Younger: 6-7 Gyr (6%)
- Older: 9-10 Gyr (60%)

- Younger stars are split in their distribution, older stars are not

Debattista, (2016), submitted
Model explains split clump $f[\text{Fe/H}]$

- Younger stars are split in their distribution, older stars are not

Debattista, (2016), submitted

- Younger stars are split in their distribution, older stars are not