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Riemann-Cartan Spacetime

@ Let spacetime be a four-dimensional differentiable manifold.
o Parallely displaced from x* to x* + dx* a vector V* changes
according to
dv> = —F’\W VHEdxY.
= The manifold is a linearly connected space L.

o Let there be a metric tensor field gy, (x) which allows local
measurements of distances and angles

ds? = guv(x)dx*dx".
@ Let this interval be invariant to ensure local Minkowskian
structure.
= Nonmetricity is zero
Q)\,uu = a)\gm/ - rp)\ugpu - rp)\l/gup =0.
= Such a manifold is called a Riemann-Cartan spacetime Us,.
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K \w =T+ Tut = T,

@ If torsion vanishes (TAW = 0) we recover the
(pseudo-)Riemannian spacetime V; of General Relativity.

o

o If curvature additionally vanishes (R*,,, = 0) we find the
Minkowski spacetime R; of Special Relativity.
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Averaging Process and Averaged Connection
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o where e(x’) = det (e',(x)) = \/—g(X)
@ Path independent parallel transporters

Pt (x,x") = est(x)e? v (x") and P, Y (x,x) = e?,(x)e)” (x)
e Domain of averaging Vs = [; e(x')d*x’

@ Define the averaged connection according to
FANV = <K)\/W> - r)‘uv

@ This connection has non-zero torsion
A 1(FX A _1 A A
T py E(r Vu_r /W) - §(<T W>_ T IW)

= The averaged geometry is a Riemann-Cartan geometry
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Hehl, von der Heyde, Kerlick, and Nester:

@ Lagrangian invariant under Poincaré gauge transformations
L=L(WV,0V, g 0g,T)
@ Metric energy-momentum tensor o* = 25L/0g,.,
and spin energy potential pu)\"* = 6L/6T*,,

@ Spin angular momentum tensor 7)\** = 5£/5K>‘W
and total energy-momentum tensor X;* = §L/de’,

@ They are related according to
N)\;w — _7_)\,u1/ 4 T;Lu)\ _ Tv)\p

and
YW =gl — (V) + 2Tp)\p)u“”)‘
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Poincaré Gauge Theory

Field Equations

@ Matter equation
OL/0V =0
@ 1st field equation
G" = RM — %Rg’“’ =8rGLM
@ 2nd field equation
T + 00Tl +0)TP,, =87Gry ™

= Combined field equation
Ruv — %f\’g“”
=8nGot” + 87TG(_2Tﬂp>\TV)\p + QTﬂppTW\A = 27’“/")‘7'Vp>\

+Tp>‘“7'p>\" + %g‘“’(27’0p>\7"’>‘p — 27'(,/0,)7"’)‘)\ + T"p’\Tgp,\))
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Nonminimal coupling of the Riemannian connection to the
matter field W

FAW = fAW + 871G (TW)‘—T,,A“ + 7')‘#,,+5ﬁ7',m"—gw,7>“’g)

= <K)\IW> - r/\uv
Determine the averaged connection from the Weitzenbock
connection and the averaged contortion tensor

The averaged connection defines the effective spin angular
momentum tensor

'_I')‘W + 5;‘ '_I"’,,p + 51),‘ TPM, = 87TG7'W,)‘
With the averaged connection and the effective spin angular

momentum tensor given above equation determines in
principle the smoothed metric

Apply to cosmological perturbation theory
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@ Linear scalar perturbations about a FLRW background
ds? = —(1 + 2¢)dt? + a%(t)(1 — 2¢)5;dx’ dx/

@ Perturbed energy momentum tensor T, = p(1 + d)u,u,
2

Background a(t) = (%)g p(t) = p(to) (%)2, a(tp) =1
Gg component: energy constraint equation
V2¢(to) = 4mGa*p(to)d(to)
° G,-0 component: momentum constraint equation
3(0i¢) + a(9i) = —4n Gapvi
@ Trace of the GJ’ component: evolution equation

¢+ 4H + 3H> ¢ +23¢ — 2H2$ =0
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realized by Wegner-Wilson line operator
V(X', x0; Cxpx) = P exp [ fc dz" fu(z)}

where [ u(x) are four matrices with
components (I",(x))} = F)‘ J(x)

@ Perturbed geodesic
. . !
zh(s) = 9 (0)2 + 9(0) fs/a<b(s’)ds’+5U6jk/vk(§)“%(0)
@ Perturbed connector
Vi(7,0,5Cor) = (1 + (7) — ¢(0))) 0 — 6% exy 4 (7)
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The Gaussian Bump

@ Let the density pertubation at tp be of Gaussian shape
i(to) = Aexp(—ﬁ)
= The scalar perturbation of the metric at ty becomes
o(r, to) = —m3/2AG(20)3p(to) Lerf ()
= The scalar perturbation of the metric at t becomes
o(r,t) = ( (ttE’)E‘/3 5) (—7r3/2AG(2a)3/3(t0)%erf(é))
= The velocity field becomes

i m/2AG(20)3p(10) 1 73/2AG(20)3p(t0) 4 +2/3
i 0 o PLo _t_
v 6mGe2/31 rerf(57) 4G (553 +

%%)( @erf(za)—i- fexp( (2:7)2)%>

1
O
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@ The torsion tensor 7')‘,“, defines an effective spin angular
momentum tensor 7-,“,’\, which leads to an additional term in
the combined field equation.

@ How to choose the tetrad field?

@ What is the structure of the smoothed manifold defined in
this way?

@ In a cosmological setting, what is the magnitude of the

additional term in the field equation and does it behave like
dark energy?
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