Einstein-Cartan Theory and Averaging

Juliane Behrend

Robert van den Hoogen Alan A. Coley Johan Brannlund

Instituut voor Theoretische Fysica, Universiteit Utrecht, The Netherlands

Institut d'Astrophysique de Paris November 23, 2011

- Riemann-Cartan Spacetime and Teleparallel Gravity
- 2 Averaged Connection
- Poincaré Gauge Theory
- 4 Conclusions and Outlook

• Let spacetime be a four-dimensional differentiable manifold.

- Let spacetime be a four-dimensional differentiable manifold.
- Parallely displaced from x^{μ} to $x^{\mu} + dx^{\mu}$ a vector V^{λ} changes according to

$$dV^{\lambda} = -\Gamma^{\lambda}{}_{\mu\nu}V^{\mu}dx^{\nu}.$$

- Let spacetime be a four-dimensional differentiable manifold.
- Parallely displaced from x^μ to $x^\mu + dx^\mu$ a vector V^λ changes according to

$$dV^{\lambda} = -\Gamma^{\lambda}{}_{\mu\nu}V^{\mu}dx^{\nu}.$$

 \Rightarrow The manifold is a **linearly connected space** L_4 .

- Let spacetime be a four-dimensional differentiable manifold.
- Parallely displaced from x^{μ} to $x^{\mu} + dx^{\mu}$ a vector V^{λ} changes according to

$$dV^{\lambda} = -\Gamma^{\lambda}{}_{\mu\nu}V^{\mu}dx^{\nu}.$$

- \Rightarrow The manifold is a **linearly connected space** L_4 .
 - Let there be a metric tensor field $g_{\mu\nu}(x)$ which allows local measurements of distances and angles

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$$
.

- Let spacetime be a four-dimensional differentiable manifold.
- Parallely displaced from x^{μ} to $x^{\mu} + dx^{\mu}$ a vector V^{λ} changes according to

$$dV^{\lambda} = -\Gamma^{\lambda}{}_{\mu\nu}V^{\mu}dx^{\nu}.$$

- \Rightarrow The manifold is a **linearly connected space** L_4 .
 - Let there be a metric tensor field $g_{\mu\nu}(x)$ which allows local measurements of distances and angles

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}.$$

 Let this interval be invariant to ensure local Minkowskian structure.

- Let spacetime be a four-dimensional differentiable manifold.
- Parallely displaced from x^{μ} to $x^{\mu} + dx^{\mu}$ a vector V^{λ} changes according to

$$dV^{\lambda} = -\Gamma^{\lambda}{}_{\mu\nu}V^{\mu}dx^{\nu}.$$

- \Rightarrow The manifold is a **linearly connected space** L_4 .
 - Let there be a metric tensor field $g_{\mu\nu}(x)$ which allows local measurements of distances and angles

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}.$$

- Let this interval be invariant to ensure local Minkowskian structure.
- ⇒ Nonmetricity is zero

$$Q_{\lambda\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\rho}{}_{\lambda\mu}g_{\rho\nu} - \Gamma^{\rho}{}_{\lambda\nu}g_{\mu\rho} = 0.$$

- Let spacetime be a four-dimensional differentiable manifold.
- Parallely displaced from x^{μ} to $x^{\mu} + dx^{\mu}$ a vector V^{λ} changes according to

$$dV^{\lambda} = -\Gamma^{\lambda}{}_{\mu\nu}V^{\mu}dx^{\nu}.$$

- \Rightarrow The manifold is a **linearly connected space** L_4 .
 - Let there be a metric tensor field $g_{\mu\nu}(x)$ which allows local measurements of distances and angles

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu}$$
.

- Let this interval be invariant to ensure local Minkowskian structure.
- ⇒ Nonmetricity is zero

$$Q_{\lambda\mu\nu} = \partial_{\lambda}g_{\mu\nu} - \Gamma^{\rho}{}_{\lambda\mu}g_{\rho\nu} - \Gamma^{\rho}{}_{\lambda\nu}g_{\mu\rho} = 0.$$

 \Rightarrow Such a manifold is called a **Riemann-Cartan spacetime** U_4 .

$$\label{eq:Kappa} {\mathcal{K}^{\lambda}}_{\mu\nu} = \mathring{\Gamma}^{\lambda}{}_{\mu\nu} - {\Gamma^{\lambda}}_{\mu\nu}.$$

$$K^{\lambda}{}_{\mu\nu} = \mathring{\Gamma}^{\lambda}{}_{\mu\nu} - \Gamma^{\lambda}{}_{\mu\nu}.$$

• In terms of the torsion tensor $T^{\lambda}_{\mu\nu} = \frac{1}{2}(\Gamma^{\lambda}_{\mu\nu} - \Gamma^{\lambda}_{\nu\mu})$ it is $K^{\lambda}_{\mu\nu} = -T^{\lambda}_{\mu\nu} + T_{\mu\nu}^{\lambda} - T_{\nu}^{\lambda}_{\mu}$

$$K^{\lambda}{}_{\mu\nu} = \mathring{\Gamma}^{\lambda}{}_{\mu\nu} - \Gamma^{\lambda}{}_{\mu\nu}.$$

• In terms of the torsion tensor $T^{\lambda}{}_{\mu\nu}=\frac{1}{2}(\Gamma^{\lambda}{}_{\mu\nu}-\Gamma^{\lambda}{}_{\nu\mu})$ it is $\mathcal{K}^{\lambda}{}_{\mu\nu}=-T^{\lambda}{}_{\mu\nu}+T_{\mu\nu}{}^{\lambda}-T_{\nu}{}^{\lambda}{}_{\mu}.$

• If torsion vanishes $(T^{\lambda}_{\nu\mu} = 0)$ we recover the **(pseudo-)Riemannian spacetime** V_4 of General Relativity.

$$K^{\lambda}{}_{\mu\nu} = \mathring{\Gamma}^{\lambda}{}_{\mu\nu} - \Gamma^{\lambda}{}_{\mu\nu}.$$

- In terms of the torsion tensor $T^{\lambda}{}_{\mu\nu}=\frac{1}{2}(\Gamma^{\lambda}{}_{\mu\nu}-\Gamma^{\lambda}{}_{\nu\mu})$ it is $\mathcal{K}^{\lambda}{}_{\mu\nu}=-T^{\lambda}{}_{\mu\nu}+T_{\mu\nu}{}^{\lambda}-T_{\nu}{}^{\lambda}{}_{\mu}.$
- If torsion vanishes ($T^{\lambda}_{\nu\mu} = 0$) we recover the (pseudo-)Riemannian spacetime V_4 of General Relativity.
- If curvature additionally vanishes ($\mathring{R}^{\lambda}_{\rho\mu\nu}=0$) we find the **Minkowski spacetime** R_4 of Special Relativity.

$$K^{\lambda}{}_{\mu\nu} = \mathring{\Gamma}^{\lambda}{}_{\mu\nu} - \Gamma^{\lambda}{}_{\mu\nu}.$$

• In terms of the torsion tensor $T^{\lambda}{}_{\mu\nu}=\frac{1}{2}(\Gamma^{\lambda}{}_{\mu\nu}-\Gamma^{\lambda}{}_{\nu\mu})$ it is $K^{\lambda}{}_{\mu\nu}=-T^{\lambda}{}_{\mu\nu}+T_{\mu\nu}{}^{\lambda}-T_{\nu}{}^{\lambda}{}_{\mu}.$

- If torsion vanishes $(T^{\lambda}_{\nu\mu} = 0)$ we recover the **(pseudo-)Riemannian spacetime** V_4 of General Relativity.
- If curvature additionally vanishes $(\mathring{R}^{\lambda}{}_{\rho\mu\nu}=0)$ we find the **Minkowski spacetime** R_4 of Special Relativity.

$$\Rightarrow$$

$$(L_4,g) \stackrel{Q=0}{\longrightarrow} U_4 \stackrel{T=0}{\longrightarrow} V_4 \stackrel{R=0}{\longrightarrow} R_4$$

GENERAL RELATIVITY

Teleparallel Gravity

• The presence of a nontrivial tetrad $e^i_{\ \mu}(x)$ on the spacetime manifold

Teleparallel Gravity

- The presence of a nontrivial tetrad $e^i_{\mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x) = \eta_{ii} e^i_{\ \mu}(x) e^j_{\ \nu}(x)$

Teleparallel Gravity

- The presence of a nontrivial tetrad $e^i_{\mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu
 u}(x) = \eta_{ij} e^i_{\ \mu}(x) e^j_{\
 u}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} + \partial_{\mu} g_{\rho\nu} \partial_{\rho} g_{\mu\nu})$

TELEPARALLEL GRAVITY

- The presence of a nontrivial tetrad $e^i_{\ \mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x) = \eta_{ij}e^i_{\ \mu}(x)e^j_{\ \nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} + \partial_{\mu} g_{\rho\nu} \partial_{\rho} g_{\mu\nu})$
- \Rightarrow whose torsion is zero $\frac{1}{2}(\mathring{\Gamma}^{\lambda}{}_{\mu\nu} \mathring{\Gamma}^{\lambda}{}_{\nu\mu}) = 0$

Teleparallel Gravity

- The presence of a nontrivial tetrad $e^i_{\ \mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x) = \eta_{ij}e^i{}_{\mu}(x)e^j{}_{\nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} + \partial_{\mu} g_{\rho\nu} \partial_{\rho} g_{\mu\nu})$
- \Rightarrow whose torsion is zero $\frac{1}{2}(\mathring{\Gamma}^{\lambda}{}_{\mu\nu} \mathring{\Gamma}^{\lambda}{}_{\nu\mu}) = 0$
- ⇒ and whose curvature is (in general) non-zero

$$\mathring{R}^{\lambda}_{\rho\mu\nu} \!\!=\!\! \partial_{\mu}\mathring{\Gamma}^{\lambda}_{\rho\nu} \!\!-\! \partial_{\nu}\mathring{\Gamma}^{\lambda}_{\rho\mu} \!\!+\! \mathring{\Gamma}^{\lambda}_{\sigma\mu}\mathring{\Gamma}^{\sigma}_{\rho\nu} \!\!-\! \mathring{\Gamma}^{\lambda}_{\sigma\nu}\mathring{\Gamma}^{\sigma}_{\rho\mu}$$

- The presence of a nontrivial tetrad $e^i_{\mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x)=\eta_{ij}e^i{}_{\mu}(x)e^j{}_{\nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} + \partial_{\mu} g_{\rho\nu} \partial_{\rho} g_{\mu\nu})$
- \Rightarrow whose torsion is zero $\frac{1}{2}(\mathring{\Gamma}^{\lambda}{}_{\mu\nu} \mathring{\Gamma}^{\lambda}{}_{\nu\mu}) = 0$
- ⇒ and whose curvature is (in general) non-zero

$$\mathring{R}^{\lambda}_{\rho\mu\nu}\!\!=\!\!\partial_{\mu}\mathring{\Gamma}^{\lambda}_{\rho\nu}\!\!-\!\partial_{\nu}\mathring{\Gamma}^{\lambda}_{\rho\mu}\!\!+\!\mathring{\Gamma}^{\lambda}_{\sigma\mu}\mathring{\Gamma}^{\sigma}_{\rho\nu}\!\!-\!\mathring{\Gamma}^{\lambda}_{\sigma\nu}\mathring{\Gamma}^{\sigma}_{\rho\mu}$$

Teleparallel Gravity

• The presence of a nontrivial tetrad $e^{i}_{\mu}(x)$ on the spacetime manifold

- The presence of a nontrivial tetrad $e^i_{\ \mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x)=\eta_{ij}e^i_{\ \mu}(x)e^j_{\ \nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} + \partial_{\mu} g_{\rho\nu} \partial_{\rho} g_{\mu\nu})$
- \Rightarrow whose torsion is zero $\frac{1}{2}(\mathring{\Gamma}^{\lambda}{}_{\mu\nu} \mathring{\Gamma}^{\lambda}{}_{\nu\mu}) = 0$
- ⇒ and whose curvature is (in general) non-zero

$$\mathring{R}^{\lambda}_{\rho\mu\nu}\!\!=\!\!\partial_{\mu}\mathring{\Gamma}^{\lambda}_{\rho\nu}\!\!-\!\partial_{\nu}\mathring{\Gamma}^{\lambda}_{\rho\mu}\!\!+\!\mathring{\Gamma}^{\lambda}_{\sigma\mu}\mathring{\Gamma}^{\sigma}_{\rho\nu}\!\!-\!\mathring{\Gamma}^{\lambda}_{\sigma\nu}\mathring{\Gamma}^{\sigma}_{\rho\mu}$$

Teleparallel Gravity

- The presence of a nontrivial tetrad $e^i_{\ \mu}(x)$ on the spacetime manifold
- \Rightarrow induces a parallel structure $\partial_{\mu}e_{i}^{\ \nu}(x) + \Gamma^{\nu}_{\ \mu\lambda}(x)e_{i}^{\ \lambda}(x) = 0$

- The presence of a nontrivial tetrad $e^i_{\ \mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x) = \eta_{ij}e^i_{\ \mu}(x)e^j_{\ \nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} + \partial_{\mu} g_{\rho\nu} \partial_{\rho} g_{\mu\nu})$
- \Rightarrow whose torsion is zero $rac{1}{2}(\mathring{\Gamma}^{\lambda}{}_{\mu
 u} \mathring{\Gamma}^{\lambda}{}_{
 u\mu}) = 0$
- ⇒ and whose curvature is (in general) non-zero

$$\mathring{R}^{\lambda}_{\rho\mu\nu}\!\!=\!\!\partial_{\mu}\mathring{\Gamma}^{\lambda}_{\rho\nu}\!\!-\!\partial_{\nu}\mathring{\Gamma}^{\lambda}_{\rho\mu}\!\!+\!\mathring{\Gamma}^{\lambda}_{\sigma\mu}\mathring{\Gamma}^{\sigma}_{\rho\nu}\!\!-\!\mathring{\Gamma}^{\lambda}_{\sigma\nu}\mathring{\Gamma}^{\sigma}_{\rho\mu}$$

Teleparallel Gravity

- The presence of a nontrivial tetrad $e^i_{\ \mu}(x)$ on the spacetime manifold
- \Rightarrow induces a parallel structure $\partial_{\mu}e_{i}^{\ \nu}(x) + \Gamma^{\nu}{}_{\mu\lambda}(x)e_{i}^{\ \lambda}(x) = 0$
- with the Weitzenböck connection

$$\Gamma^{\lambda}{}_{\mu\nu} = e_{i}{}^{\lambda}\partial_{\nu}e^{i}{}_{\mu}$$

- The presence of a nontrivial tetrad $e^i_{\ \mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x) = \eta_{ij}e^i_{\ \mu}(x)e^j_{\ \nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} + \partial_{\mu} g_{\rho\nu} \partial_{\rho} g_{\mu\nu})$
- \Rightarrow whose torsion is zero $\frac{1}{2}(\mathring{\Gamma}^{\lambda}{}_{\mu\nu} \mathring{\Gamma}^{\lambda}{}_{\nu\mu}) = 0$
- ⇒ and whose curvature is (in general) non-zero

$$\mathring{R}^{\lambda}_{\rho\mu\nu}\!\!=\!\!\partial_{\mu}\mathring{\Gamma}^{\lambda}_{\rho\nu}\!\!-\!\partial_{\nu}\mathring{\Gamma}^{\lambda}_{\rho\mu}\!\!+\!\!\mathring{\Gamma}^{\lambda}_{\sigma\mu}\mathring{\Gamma}^{\sigma}_{\rho\nu}\!\!-\!\mathring{\Gamma}^{\lambda}_{\sigma\nu}\mathring{\Gamma}^{\sigma}_{\rho\mu}$$

Teleparallel Gravity

- The presence of a nontrivial tetrad $e^i_{\ \mu}(x)$ on the spacetime manifold
- \Rightarrow induces a parallel structure $\partial_{\mu}e_{i}^{\ \nu}(x) + \Gamma^{\nu}{}_{\mu\lambda}(x)e_{i}^{\ \lambda}(x) = 0$
- ⇒ with the Weitzenböck connection

$$\Gamma^{\lambda}{}_{\mu\nu} = e_{i}{}^{\lambda}\partial_{\nu}e^{i}{}_{\mu}$$

 $\begin{array}{l} \Rightarrow \text{ whose curvature is zero} \\ \partial_{\mu}\Gamma^{\lambda}_{\rho\nu}\!\!-\!\!\partial_{\nu}\Gamma^{\lambda}_{\rho\mu}\!\!+\!\!\Gamma^{\lambda}_{\sigma\mu}\Gamma^{\sigma}_{\rho\nu}\!\!-\!\!\Gamma^{\lambda}_{\sigma\nu}\Gamma^{\sigma}_{\rho\mu} = 0 \end{array}$

- The presence of a nontrivial tetrad $e^i_{\mu}(x)$ on the spacetime manifold
- \Rightarrow induces a metric structure $g_{\mu\nu}(x) = \eta_{ii} e^i_{\ \mu}(x) e^j_{\ \nu}(x)$
- \Rightarrow with the Levi-Civita connection $\mathring{\Gamma}^{\lambda}_{\mu\nu} = \frac{1}{2} g^{\lambda\rho} (\partial_{\nu} g_{\rho\mu} + \partial_{\mu} g_{\rho\nu} \partial_{\rho} g_{\mu\nu})$
- \Rightarrow whose torsion is zero $rac{1}{2}(\mathring{\Gamma}^{\lambda}{}_{\mu
 u} \mathring{\Gamma}^{\lambda}{}_{
 u\mu}) = 0$
- ⇒ and whose curvature is (in general) non-zero

$$\mathring{R}^{\lambda}_{\rho\mu\nu}\!\!=\!\!\partial_{\mu}\mathring{\Gamma}^{\lambda}_{\rho\nu}\!\!-\!\partial_{\nu}\mathring{\Gamma}^{\lambda}_{\rho\mu}\!\!+\!\mathring{\Gamma}^{\lambda}_{\sigma\mu}\mathring{\Gamma}^{\sigma}_{\rho\nu}\!\!-\!\mathring{\Gamma}^{\lambda}_{\sigma\nu}\mathring{\Gamma}^{\sigma}_{\rho\mu}$$

Teleparallel Gravity

- The presence of a nontrivial tetrad $e^i_{\mu}(x)$ on the spacetime manifold
- \Rightarrow induces a parallel structure $\partial_{\mu}e_{i}^{\ \nu}(x)+\Gamma^{
 u}_{\ \mu\lambda}(x)e_{i}^{\ \lambda}(x)=0$
- ⇒ with the Weitzenböck connection

$$\Gamma^{\lambda}{}_{\mu\nu} = e_{i}{}^{\lambda}\partial_{\nu}e^{i}{}_{\mu}$$

- $\Rightarrow \text{ whose curvature is zero} \\ \partial_{\mu}\Gamma^{\lambda}_{\rho\nu}\!\!-\!\!\partial_{\nu}\Gamma^{\lambda}_{\rho\mu}\!\!+\!\!\Gamma^{\lambda}_{\sigma\mu}\Gamma^{\sigma}_{\rho\nu}\!\!-\!\!\Gamma^{\lambda}_{\sigma\nu}\Gamma^{\sigma}_{\rho\mu} = 0$
- \Rightarrow and whose torsion is (in general) non-zero $T^{\lambda}_{\ \mu\nu} = \frac{1}{2} (\Gamma^{\lambda}_{\ \mu\nu} \Gamma^{\lambda}_{\ \nu\mu})$

GENERAL RELATIVITY

Teleparallel Gravity

 Einstein-Hilbert lagrangian

$$\mathcal{L}=rac{e}{16\pi G}\mathring{R}$$

Teleparallel Gravity

General Relativity

 Einstein-Hilbert lagrangian

$$\mathcal{L} = rac{e}{16\pi G} \mathring{R}$$

• (Spinless) test particles move along geodesics

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

 Einstein-Hilbert lagrangian

$$\mathcal{L} = rac{\mathrm{e}}{16\pi G} \mathring{R}$$

 (Spinless) test particles move along geodesics

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

TELEPARALLEL GRAVITY

In terms of Weitzenböck connection

$$\mathcal{L} = \frac{e}{16\pi G} T$$

$$T = \frac{1}{4} T^{\lambda \sigma \nu} T_{\lambda \sigma \nu} - T^{\lambda \sigma}{}_{\lambda} T^{\nu}{}_{\sigma \nu} - \frac{1}{2} T^{\lambda \sigma \nu} T_{\sigma \nu \lambda}$$

GENERAL RELATIVITY

 Einstein-Hilbert lagrangian

$$\mathcal{L} = rac{e}{16\pi G} \mathring{R}$$

 (Spinless) test particles move along geodesics

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

TELEPARALLEL GRAVITY

In terms of Weitzenböck connection

$$\mathcal{L} = \frac{e}{16\pi G} T$$

$$T = \frac{1}{4} T^{\lambda \sigma \nu} T_{\lambda \sigma \nu} - T^{\lambda \sigma}{}_{\lambda} T^{\nu}{}_{\sigma \nu} - \frac{1}{2} T^{\lambda \sigma \nu} T_{\sigma \nu \lambda}$$

Autoparallels?

$$\frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu} u^{\mu} u^{\nu} = 0$$

GENERAL RELATIVITY

 Einstein-Hilbert lagrangian

$$\mathcal{L} = \frac{e}{16\pi G} \mathring{R}$$

 (Spinless) test particles move along geodesics

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

TELEPARALLEL GRAVITY

In terms of Weitzenböck connection

$$\mathcal{L} = \frac{e}{16\pi G} T$$

$$T = \frac{1}{4} T^{\lambda \sigma \nu} T_{\lambda \sigma \nu} - T^{\lambda \sigma}_{\lambda} T^{\nu}_{\sigma \nu} - \frac{1}{2} T^{\lambda \sigma \nu} T_{\sigma \nu \lambda}$$

Autoparallels?

$$\frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu} u^{\mu} u^{\nu} = 0$$

• Extremal curves?

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

 Einstein-Hilbert lagrangian

$$\mathcal{L}=rac{\mathrm{e}}{16\pi G}\mathring{R}$$

 (Spinless) test particles move along geodesics

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

Teleparallel Gravity

In terms of Weitzenböck connection

$$\mathcal{L} = rac{e}{16\pi G}T$$

$$T = \frac{1}{4}T^{\lambda\sigma\nu}T_{\lambda\sigma\nu} - T^{\lambda\sigma}{}_{\lambda}T^{\nu}{}_{\sigma\nu} - \frac{1}{2}T^{\lambda\sigma\nu}T_{\sigma\nu\lambda}$$

Autoparallels?

$$\frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu} u^{\mu} u^{\nu} = 0$$

• Extremal curves?

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

⇒ Force equation:

$$\frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu}u^{\mu}u^{\nu} = T_{\mu\lambda\nu}u^{\mu}u^{\nu}$$

GENERAL RELATIVITY

 Einstein-Hilbert lagrangian

$$\mathcal{L} = \frac{e}{16\pi G} \mathring{R}$$

 (Spinless) test particles move along geodesics

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

Teleparallel Gravity

In terms of Weitzenböck connection

$$\mathcal{L} = \frac{e}{16\pi G} T$$

$$T = \frac{1}{4} T^{\lambda \sigma \nu} T_{\lambda \sigma \nu} - T^{\lambda \sigma}{}_{\lambda} T^{\nu}{}_{\sigma \nu} - \frac{1}{2} T^{\lambda \sigma \nu} T_{\sigma \nu \lambda}$$

Autoparallels?

$$\frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

• Extremal curves?

$$\frac{du_{\lambda}}{ds} - \mathring{\Gamma}_{\mu\lambda\nu}u^{\mu}u^{\nu} = 0$$

⇒ Force equation:

$$\frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu}u^{\mu}u^{\nu} = T_{\mu\lambda\nu}u^{\mu}u^{\nu}$$

$$\Rightarrow \frac{du_{\lambda}}{ds} - \Gamma_{\mu\lambda\nu}u^{\mu}u^{\nu} = K_{\lambda\mu\nu}u^{\mu}u^{\nu}$$

$$\langle T^{\mu}{}_{\nu} \rangle(x) = \frac{1}{V_{\Sigma}} \int_{\Sigma} P^{\mu}{}_{\mu'}(x, x') P_{\nu}{}^{\nu'}(x, x') T^{\mu'}{}_{\nu'}(x') e(x') d^4x'$$

$$\langle T^{\mu}{}_{\nu} \rangle (x) = \frac{1}{V_{\Sigma}} \int_{\Sigma} P^{\mu}{}_{\mu'}(x, x') P_{\nu}{}^{\nu'}(x, x') T^{\mu'}{}_{\nu'}(x') e(x') d^4x'$$

• where
$$e(x') = \det\left(e^i{}_{\mu}(x')\right) = \sqrt{-g(x')}$$

$$\langle T^{\mu}{}_{\nu} \rangle (x) = \frac{1}{V_{\Sigma}} \int_{\Sigma} P^{\mu}{}_{\mu'}(x, x') P_{\nu}{}^{\nu'}(x, x') T^{\mu'}{}_{\nu'}(x') e(x') d^{4}x'$$

- where $e(x') = \det(e^{i}_{\mu}(x')) = \sqrt{-g(x')}$
- Path independent parallel transporters $P^{\mu}_{ii'}(x,x') = e_a^{\mu}(x)e^a_{ii'}(x')$ and $P_{\nu}^{\nu'}(x,x') = e^a_{\nu}(x)e_a^{\nu'}(x')$

$$\langle T^{\mu}{}_{
u}
angle (x) = rac{1}{V_{\Sigma}} \int_{\Sigma} P^{\mu}{}_{\mu'}(x, x') P_{\nu}{}^{\nu'}(x, x') T^{\mu'}{}_{\nu'}(x') e(x') d^4x'$$

- where $e(x') = \det(e^{i}_{\mu}(x')) = \sqrt{-g(x')}$
- Path independent parallel transporters $P^{\mu}_{\mu'}(x,x') = e_a^{\mu}(x)e^a_{\mu'}(x')$ and $P_{\nu}^{\nu'}(x,x') = e^a_{\nu}(x)e_a^{\nu'}(x')$
- Domain of averaging $V_{\Sigma} = \int_{\Sigma} e(x') d^4 x'$

$$\langle T^{\mu}{}_{\nu} \rangle (x) = \frac{1}{V_{\Sigma}} \int_{\Sigma} P^{\mu}{}_{\mu'}(x, x') P_{\nu}{}^{\nu'}(x, x') T^{\mu'}{}_{\nu'}(x') e(x') d^{4}x'$$

- where $e(x') = \det(e^{i}_{\mu}(x')) = \sqrt{-g(x')}$
- Path independent parallel transporters $P^{\mu}_{\mu'}(x,x') = e_a^{\mu}(x)e^a_{\mu'}(x')$ and $P_{\nu}^{\nu'}(x,x') = e^a_{\nu}(x)e_a^{\nu'}(x')$
- Domain of averaging $V_{\Sigma} = \int_{\Sigma} e(x') d^4 x'$
- Define the averaged connection according to

$$\bar{\Gamma}^{\lambda}{}_{\mu\nu} = \left\langle K^{\lambda}{}_{\mu\nu} \right\rangle - \Gamma^{\lambda}{}_{\mu\nu}$$

Averaging Process and Averaged Connection

$$\langle T^{\mu}{}_{\nu} \rangle (x) = \frac{1}{V_{\Sigma}} \int_{\Sigma} P^{\mu}{}_{\mu'}(x, x') P_{\nu}{}^{\nu'}(x, x') T^{\mu'}{}_{\nu'}(x') e(x') d^{4}x'$$

- where $e(x') = \det(e^{i}_{\mu}(x')) = \sqrt{-g(x')}$
- Path independent parallel transporters $P^{\mu}_{\mu'}(x,x') = e_a^{\mu}(x)e^a_{\mu'}(x')$ and $P_{\nu}^{\nu'}(x,x') = e^a_{\nu}(x)e_a^{\nu'}(x')$
- Domain of averaging $V_{\Sigma} = \int_{\Sigma} e(x') d^4 x'$
- Define the averaged connection according to

$$\bar{\mathsf{\Gamma}}^{\lambda}{}_{\mu\nu} = \left\langle \mathsf{K}^{\lambda}{}_{\mu\nu} \right\rangle - \mathsf{\Gamma}^{\lambda}{}_{\mu\nu}$$

This connection has non-zero torsion

$$ar{\mathcal{T}}^{\lambda}{}_{\mu
u} = rac{1}{2}(ar{\mathsf{\Gamma}}^{\lambda}{}_{
u\mu} - ar{\mathsf{\Gamma}}^{\lambda}{}_{\mu
u}) = rac{1}{2}(\left\langle \left. \mathcal{T}^{\lambda}{}_{\mu
u} \right
angle - \left. \mathcal{T}^{\lambda}{}_{\mu
u}
ight)$$

Averaging Process and Averaged Connection

$$\langle T^{\mu}{}_{\nu} \rangle (x) = \frac{1}{V_{\Sigma}} \int_{\Sigma} P^{\mu}{}_{\mu'}(x, x') P_{\nu}{}^{\nu'}(x, x') T^{\mu'}{}_{\nu'}(x') e(x') d^{4}x'$$

- where $e(x') = \det(e^{i}_{\mu}(x')) = \sqrt{-g(x')}$
- Path independent parallel transporters $P^{\mu}_{\mu'}(x,x') = e_a^{\mu}(x)e^a_{\mu'}(x')$ and $P_{\nu}^{\nu'}(x,x') = e^a_{\nu}(x)e_a^{\nu'}(x')$
- Domain of averaging $V_{\Sigma} = \int_{\Sigma} e(x') d^4 x'$
- Define the averaged connection according to

$$\bar{\Gamma}^{\lambda}{}_{\mu\nu} = \left\langle \mathcal{K}^{\lambda}{}_{\mu\nu} \right\rangle - \Gamma^{\lambda}{}_{\mu\nu}$$

This connection has non-zero torsion

$$\bar{\mathcal{T}}^{\lambda}{}_{\mu\nu} = \frac{1}{2}(\bar{\mathsf{\Gamma}}^{\lambda}{}_{\nu\mu} - \bar{\mathsf{\Gamma}}^{\lambda}{}_{\mu\nu}) = \frac{1}{2}(\left\langle \mathcal{T}^{\lambda}{}_{\mu\nu} \right\rangle - \mathcal{T}^{\lambda}{}_{\mu\nu})$$

⇒ The averaged geometry is a Riemann-Cartan geometry

Hehl, von der Heyde, Kerlick, and Nester:

• Lagrangian invariant under Poincaré gauge transformations

$$\mathcal{L} = \mathcal{L}(\Psi, \partial \Psi, g, \partial g, T)$$

Hehl, von der Heyde, Kerlick, and Nester:

Lagrangian invariant under Poincaré gauge transformations

$$\mathcal{L} = \mathcal{L}(\Psi, \partial \Psi, g, \partial g, T)$$

• Metric energy-momentum tensor $\sigma^{\mu\nu}=2\delta\mathcal{L}/\delta g_{\mu\nu}$ and spin energy potential $\mu_{\lambda}^{\nu\mu} = \delta \mathcal{L}/\delta T^{\lambda}_{\mu\nu}$

Hehl, von der Heyde, Kerlick, and Nester:

Lagrangian invariant under Poincaré gauge transformations

$$\mathcal{L} = \mathcal{L}(\Psi, \partial \Psi, g, \partial g, T)$$

- Metric energy-momentum tensor $\sigma^{\mu\nu}=2\delta\mathcal{L}/\delta g_{\mu\nu}$ and spin energy potential $\mu_{\lambda}^{\nu\mu} = \delta \mathcal{L}/\delta T^{\lambda}_{\mu\nu}$
- Spin angular momentum tensor $\tau_{\lambda}^{\nu\mu} = \delta \mathcal{L}/\delta K^{\lambda}_{\mu\nu}$ and total energy-momentum tensor $\sum_{i}^{\mu} = \delta \mathcal{L}/\delta e^{i}_{\mu}$

Hehl, von der Hevde, Kerlick, and Nester:

Lagrangian invariant under Poincaré gauge transformations

$$\mathcal{L} = \mathcal{L}(\Psi, \partial \Psi, g, \partial g, T)$$

- Metric energy-momentum tensor $\sigma^{\mu\nu} = 2\delta \mathcal{L}/\delta g_{\mu\nu}$ and spin energy potential $\mu_{\lambda}^{\nu\mu} = \delta \mathcal{L}/\delta T^{\lambda}_{\mu\nu}$
- Spin angular momentum tensor $\tau_{\lambda}^{\nu\mu} = \delta \mathcal{L}/\delta K^{\lambda}_{\mu\nu}$ and total energy-momentum tensor $\sum_{i}^{\mu} = \delta \mathcal{L}/\delta e^{i}_{\mu}$
- They are related according to

$$\mu^{\lambda\mu\nu} = -\tau^{\lambda\mu\nu} + \tau^{\mu\nu\lambda} - \tau^{\nu\lambda\mu}$$

and

$$\Sigma^{\mu\nu} = \sigma^{\mu\nu} - (\nabla_{\lambda} + 2T^{\rho}_{\lambda\rho})\mu^{\mu\nu\lambda}$$

Matter equation

$$\delta \mathcal{L}/\delta \Psi = 0$$

Matter equation

$$\delta \mathcal{L}/\delta \Psi = 0$$

• 1st field equation

$$G^{\mu\nu}=R^{\mu\nu}-rac{1}{2}Rg^{\mu\nu}=8\pi G\Sigma^{\mu
u}$$

Matter equation

$$\delta \mathcal{L}/\delta \Psi = 0$$

1st field equation

$$G^{\mu
u}=R^{\mu
u}-rac{1}{2}Rg^{\mu
u}=8\pi G\Sigma^{\mu
u}$$

2nd field equation

$$T^{\lambda}{}_{\mu\nu} + \delta^{\lambda}_{\mu} T^{\rho}{}_{\nu\rho} + \delta^{\lambda}_{\nu} T^{\rho}{}_{\mu\rho} = 8\pi G \tau_{\mu\nu}{}^{\lambda}$$

Matter equation

$$\delta \mathcal{L}/\delta \Psi = 0$$

1st field equation

$$G^{\mu
u}=R^{\mu
u}-rac{1}{2}Rg^{\mu
u}=8\pi G\Sigma^{\mu
u}$$

2nd field equation

$$T^{\lambda}{}_{\mu\nu} + \delta^{\lambda}_{\mu} T^{\rho}{}_{\nu\rho} + \delta^{\lambda}_{\nu} T^{\rho}{}_{\mu\rho} = 8\pi G \tau_{\mu\nu}{}^{\lambda}$$

⇒ Combined field equation

$$\mathring{R}^{\mu\nu} - \frac{1}{2}\mathring{R}g^{\mu\nu}
= 8\pi G \sigma^{\mu\nu} + 8\pi G \left(-2\tau^{\mu\rho}{}_{\lambda}\tau^{\nu\lambda}{}_{\rho} + 2\tau^{\mu\rho}{}_{\rho}\tau^{\nu\lambda}{}_{\lambda} - 2\tau^{\mu\rho\lambda}\tau^{\nu}{}_{\rho\lambda} \right)
+ \tau^{\rho\lambda\mu}\tau_{\rho\lambda}{}^{\nu} + \frac{1}{2}g^{\mu\nu} \left(2\tau_{\sigma}{}^{\rho}{}_{\lambda}\tau^{\sigma\lambda}{}_{\rho} - 2\tau_{\sigma}{}^{\rho}{}_{\rho}\tau^{\sigma\lambda}{}_{\lambda} + \tau^{\sigma\rho\lambda}\tau_{\sigma\rho\lambda} \right)$$

• Nonminimal coupling of the Riemannian connection to the matter field Ψ

$$\bar{\Gamma}^{\lambda}{}_{\mu\nu} = \mathring{\Gamma}^{\lambda}{}_{\mu\nu} + 8\pi G \left(\tau_{\mu\nu}{}^{\lambda} - \tau_{\nu}{}^{\lambda}{}_{\mu} + \tau^{\lambda}{}_{\mu\nu} + \delta^{\lambda}_{\mu}\tau_{\nu\sigma}{}^{\sigma} - g_{\mu\nu}\tau^{\lambda\sigma}{}_{\sigma} \right)$$

• Nonminimal coupling of the Riemannian connection to the matter field Ψ

$$\begin{split} \bar{\Gamma}^{\lambda}{}_{\mu\nu} &= \mathring{\Gamma}^{\lambda}{}_{\mu\nu} + 8\pi G \left(\tau_{\mu\nu}{}^{\lambda} - \tau_{\nu}{}^{\lambda}{}_{\mu} + \tau^{\lambda}{}_{\mu\nu} + \delta^{\lambda}_{\mu}\tau_{\nu\sigma}{}^{\sigma} - g_{\mu\nu}\tau^{\lambda\sigma}{}_{\sigma} \right) \\ &= \left\langle K^{\lambda}{}_{\mu\nu} \right\rangle - \Gamma^{\lambda}{}_{\mu\nu} \end{split}$$

 Nonminimal coupling of the Riemannian connection to the matter field Ψ

$$\begin{split} \bar{\Gamma}^{\lambda}{}_{\mu\nu} &= \mathring{\Gamma}^{\lambda}{}_{\mu\nu} + 8\pi G \left(\tau_{\mu\nu}{}^{\lambda} - \tau_{\nu}{}^{\lambda}{}_{\mu} + \tau^{\lambda}{}_{\mu\nu} + \delta^{\lambda}_{\mu}\tau_{\nu\sigma}{}^{\sigma} - g_{\mu\nu}\tau^{\lambda\sigma}{}_{\sigma} \right) \\ &= \left\langle K^{\lambda}{}_{\mu\nu} \right\rangle - \Gamma^{\lambda}{}_{\mu\nu} \end{split}$$

⇒ Determine the averaged connection from the Weitzenböck connection and the averaged contortion tensor

 Nonminimal coupling of the Riemannian connection to the matter field Ψ

$$\begin{split} \bar{\Gamma}^{\lambda}{}_{\mu\nu} &= \mathring{\Gamma}^{\lambda}{}_{\mu\nu} + 8\pi G \left(\tau_{\mu\nu}{}^{\lambda} - \tau_{\nu}{}^{\lambda}{}_{\mu} + \tau^{\lambda}{}_{\mu\nu} + \delta^{\lambda}_{\mu}\tau_{\nu\sigma}{}^{\sigma} - g_{\mu\nu}\tau^{\lambda\sigma}{}_{\sigma} \right) \\ &= \left\langle K^{\lambda}{}_{\mu\nu} \right\rangle - \Gamma^{\lambda}{}_{\mu\nu} \end{split}$$

- ⇒ Determine the averaged connection from the Weitzenböck connection and the averaged contortion tensor
- ⇒ The averaged connection defines the effective spin angular momentum tensor

$$\bar{T}^{\lambda}{}_{\mu\nu} + \delta^{\lambda}_{\mu}\bar{T}^{\rho}{}_{\nu\rho} + \delta^{\lambda}_{\nu}\bar{T}^{\rho}{}_{\mu\rho} = 8\pi G \tau_{\mu\nu}{}^{\lambda}$$

 Nonminimal coupling of the Riemannian connection to the matter field Ψ

$$\begin{split} \bar{\Gamma}^{\lambda}{}_{\mu\nu} &= \mathring{\Gamma}^{\lambda}{}_{\mu\nu} + 8\pi G \left(\tau_{\mu\nu}{}^{\lambda} - \tau_{\nu}{}^{\lambda}{}_{\mu} + \tau^{\lambda}{}_{\mu\nu} + \delta^{\lambda}_{\mu}\tau_{\nu\sigma}{}^{\sigma} - g_{\mu\nu}\tau^{\lambda\sigma}{}_{\sigma} \right) \\ &= \left\langle K^{\lambda}{}_{\mu\nu} \right\rangle - \Gamma^{\lambda}{}_{\mu\nu} \end{split}$$

- ⇒ Determine the averaged connection from the Weitzenböck connection and the averaged contortion tensor
- ⇒ The averaged connection defines the effective spin angular momentum tensor

$$\bar{T}^{\lambda}{}_{\mu\nu} + \delta^{\lambda}_{\mu}\bar{T}^{\rho}{}_{\nu\rho} + \delta^{\lambda}_{\nu}\bar{T}^{\rho}{}_{\mu\rho} = 8\pi G \tau_{\mu\nu}{}^{\lambda}$$

⇒ With the averaged connection and the effective spin angular momentum tensor given above equation determines in principle the smoothed metric

 Nonminimal coupling of the Riemannian connection to the matter field Ψ

$$\begin{split} \bar{\Gamma}^{\lambda}{}_{\mu\nu} &= \mathring{\Gamma}^{\lambda}{}_{\mu\nu} + 8\pi G \left(\tau_{\mu\nu}{}^{\lambda} - \tau_{\nu}{}^{\lambda}{}_{\mu} + \tau^{\lambda}{}_{\mu\nu} + \delta^{\lambda}_{\mu}\tau_{\nu\sigma}{}^{\sigma} - g_{\mu\nu}\tau^{\lambda\sigma}{}_{\sigma} \right) \\ &= \left\langle K^{\lambda}{}_{\mu\nu} \right\rangle - \Gamma^{\lambda}{}_{\mu\nu} \end{split}$$

- ⇒ Determine the averaged connection from the Weitzenböck connection and the averaged contortion tensor
- ⇒ The averaged connection defines the effective spin angular momentum tensor

$$\bar{T}^{\lambda}{}_{\mu\nu} + \delta^{\lambda}_{\mu}\bar{T}^{\rho}{}_{\nu\rho} + \delta^{\lambda}_{\nu}\bar{T}^{\rho}{}_{\mu\rho} = 8\pi G \tau_{\mu\nu}{}^{\lambda}$$

- ⇒ With the averaged connection and the effective spin angular momentum tensor given above equation determines in principle the smoothed metric
- ⇒ Apply to cosmological perturbation theory

Cosmological Perturbation Theory

Linear scalar perturbations about a FLRW background

$$ds^2 = -(1+2\phi)dt^2 + a^2(t)(1-2\phi)\delta_{ij}dx^idx^j$$

• Perturbed energy momentum tensor $T_{\mu\nu} = \bar{\rho}(1+\delta)u_{\mu}u_{\nu}$

Cosmological Perturbation Theory

Linear scalar perturbations about a FLRW background

$$ds^{2} = -(1+2\phi)dt^{2} + a^{2}(t)(1-2\phi)\delta_{ij}dx^{i}dx^{j}$$

- ullet Perturbed energy momentum tensor $T_{\mu
 u}=ar
 ho(1+\delta)u_{\mu}u_{
 u}$
- Background $a(t)=\left(\frac{t}{t_0}\right)^{\frac{2}{3}}$, $\bar{\rho}(t)=\bar{\rho}(t_0)\left(\frac{t_0}{t}\right)^2$, $a(t_0)=1$

Cosmological Perturbation Theory

Linear scalar perturbations about a FLRW background

$$ds^2 = -(1+2\phi)dt^2 + a^2(t)(1-2\phi)\delta_{ij}dx^idx^j$$

- ullet Perturbed energy momentum tensor $T_{\mu
 u}=ar
 ho(1+\delta)u_{\mu}u_{
 u}$
- Background $a(t)=\left(\frac{t}{t_0}\right)^{\frac{2}{3}}$, $\bar{\rho}(t)=\bar{\rho}(t_0)\left(\frac{t_0}{t}\right)^2$, $a(t_0)=1$
- G_0^0 component: energy constraint equation $\nabla^2 \phi(t_0) = 4\pi G a^2 \bar{\rho}(t_0) \delta(t_0)$
- G_i^0 component: momentum constraint equation $\dot{a}(\partial_i \phi) + a(\partial_i \dot{\phi}) = -4\pi G a \bar{\rho} v_i$
- Trace of the G_i^i component: evolution equation

$$\ddot{\phi} + 4H\dot{\phi} + 3H^2\phi + 2\frac{\ddot{a}}{a}\phi - 2H^2\phi = 0$$

How to Choose the Tetrad Field

Parallel transport along geodesics $C_{x_0x'}$ realized by Wegner-Wilson line operator

$$V(x',x_0;\mathcal{C}_{x_0x'})=\mathcal{P}\exp\left[-\int_{\mathcal{C}_{x_0x'}}dz^{\mu}\;\mathring{\Gamma}_{\mu}(z)
ight]$$

Poincaré Gauge Theory

where $\check{\Gamma}_{\mu}(x)$ are four matrices with components $(\mathring{\Gamma}_{\mu}(x))^{\lambda}_{\nu} = \mathring{\Gamma}^{\lambda}_{\mu\nu}(x)$

How to Choose the Tetrad Field

Parallel transport along geodesics $C_{x_0x'}$ realized by Wegner-Wilson line operator

$$V(x',x_0;\mathcal{C}_{x_0x'})=\mathcal{P}\exp\left[-\int_{\mathcal{C}_{x_0x'}}dz^{\mu}\;\mathring{\Gamma}_{\mu}(z)
ight]$$

where $\check{\Gamma}_{\mu}(x)$ are four matrices with components $(\mathring{\Gamma}_{\mu}(x))^{\lambda}_{\nu} = \mathring{\Gamma}^{\lambda}_{\mu\nu}(x)$

Perturbed geodesic

$$z_P^i(s) = \frac{dz^i}{d au}(0)\frac{s}{a} + \frac{dz^i}{d au}(0)\int_0^{s/a}\phi(s')ds' + \delta^{ij}\epsilon_{jkl}v^k(\frac{s}{a})\frac{dz^l}{d au}(0)$$

How to Choose the Tetrad Field

Parallel transport along geodesics $C_{x_0x'}$ realized by Wegner-Wilson line operator

$$V(x',x_0;\mathcal{C}_{x_0x'})=\mathcal{P}\exp\left[-\int_{\mathcal{C}_{x_0x'}}dz^{\mu}\;\mathring{\Gamma}_{\mu}(z)
ight]$$

where $\check{\Gamma}_{\mu}(x)$ are four matrices with components $(\mathring{\Gamma}_{\mu}(x))^{\lambda}_{\nu} = \mathring{\Gamma}^{\lambda}_{\mu\nu}(x)$

Perturbed geodesic

$$z_P^i(s) = \frac{dz^i}{d\tau}(0)\frac{s}{a} + \frac{dz^i}{d\tau}(0)\int_0^{s/a} \phi(s')ds' + \delta^{ij}\epsilon_{jkl}v^k(\frac{s}{a})\frac{dz^l}{d\tau}(0)$$

Perturbed connector

$$V_j{}^i(\tau,0,;\mathcal{C}_{0\tau}) = (1+\phi(\tau)-\phi(0)))\,\delta_j{}^i - \delta^{ik}\epsilon_{kjl}\frac{dv^l}{d\tau}(\tau)$$

• Let the density pertubation at t_0 be of Gaussian shape

$$\delta(t_0) = A \exp(-\frac{r^2}{(2\sigma)^2})$$

• Let the density pertubation at t_0 be of Gaussian shape

$$\delta(t_0) = A \exp(-\frac{r^2}{(2\sigma)^2})$$

 \Rightarrow The scalar perturbation of the metric at t_0 becomes

$$\phi(r,t_0) = -\pi^{3/2} AG(2\sigma)^3 \bar{\rho}(t_0) \frac{1}{r} \operatorname{erf}(\frac{r}{2\sigma})$$

• Let the density pertubation at t_0 be of Gaussian shape

$$\delta(t_0) = A \exp(-\frac{r^2}{(2\sigma)^2})$$

 \Rightarrow The scalar perturbation of the metric at t_0 becomes

$$\phi(r,t_0) = -\pi^{3/2} AG(2\sigma)^3 \bar{\rho}(t_0) \frac{1}{r} \operatorname{erf}(\frac{r}{2\sigma})$$

 \Rightarrow The scalar perturbation of the metric at t becomes

$$\phi(r,t) = \left(\frac{2}{5} \left(\frac{t_0}{t}\right)^{5/3} + \frac{3}{5}\right) \left(-\pi^{3/2} AG(2\sigma)^3 \bar{\rho}(t_0) \frac{1}{r} \operatorname{erf}\left(\frac{r}{2\sigma}\right)\right)$$

• Let the density pertubation at t_0 be of Gaussian shape

$$\delta(t_0) = A \exp(-\frac{r^2}{(2\sigma)^2})$$

 \Rightarrow The scalar perturbation of the metric at t_0 becomes

$$\phi(r,t_0) = -\pi^{3/2} AG(2\sigma)^3 \bar{\rho}(t_0) \frac{1}{r} \operatorname{erf}(\frac{r}{2\sigma})$$

 \Rightarrow The scalar perturbation of the metric at t becomes

$$\phi(r,t) = \left(\frac{2}{5} \left(\frac{t_0}{t}\right)^{5/3} + \frac{3}{5}\right) \left(-\pi^{3/2} AG(2\sigma)^3 \bar{\rho}(t_0) \frac{1}{r} \operatorname{erf}\left(\frac{r}{2\sigma}\right)\right)$$

⇒ The velocity field becomes

$$v^{i} = \frac{\pi^{3/2}AG(2\sigma)^{3}\bar{\rho}(t_{0})}{6\pi Gt^{2/3}t_{0}^{1/3}} \frac{1}{r} \operatorname{erf}\left(\frac{r}{2\sigma}\right) - \frac{\pi^{3/2}AG(2\sigma)^{3}\bar{\rho}(t_{0})}{4\pi G} \left(\frac{4}{15}\frac{t^{2/3}}{t_{0}^{1/3}} + \frac{2}{5}\frac{t}{t_{0}^{2}}\right) \left(-\frac{x^{i}}{r^{3}} \operatorname{erf}\left(\frac{r}{2\sigma}\right) + \frac{1}{r}\frac{2}{\sqrt{\pi}} \exp\left(-\left(\frac{r}{2\sigma}\right)^{2}\right) \frac{x^{i}}{2\sigma r}\right)$$

• We defined an averaged connection $\bar{\Gamma}^{\lambda}{}_{\mu\nu}$ with less curvature but non-zero torsion instead.

- We defined an averaged connection $\bar{\Gamma}^{\lambda}{}_{\mu\nu}$ with less curvature but non-zero torsion instead.
- The torsion tensor $\bar{T}^{\lambda}{}_{\mu\nu}$ defines an effective spin angular momentum tensor $\tau_{\mu\nu}{}^{\lambda}$, which leads to an additional term in the combined field equation.

- We defined an averaged connection $\bar{\Gamma}^{\lambda}{}_{\mu\nu}$ with less curvature but non-zero torsion instead.
- The torsion tensor $\bar{T}^{\lambda}{}_{\mu\nu}$ defines an effective spin angular momentum tensor $\tau_{\mu\nu}{}^{\lambda}$, which leads to an additional term in the combined field equation.
- How to choose the tetrad field?

- We defined an averaged connection $\bar{\Gamma}^{\lambda}{}_{\mu\nu}$ with less curvature but non-zero torsion instead.
- The torsion tensor $\bar{T}^{\lambda}{}_{\mu\nu}$ defines an effective spin angular momentum tensor $\tau_{\mu\nu}{}^{\lambda}$, which leads to an additional term in the combined field equation.
- How to choose the tetrad field?
- What is the structure of the smoothed manifold defined in this way?

- We defined an averaged connection $\bar{\Gamma}^{\lambda}{}_{\mu\nu}$ with less curvature but non-zero torsion instead.
- The torsion tensor $\bar{T}^{\lambda}{}_{\mu\nu}$ defines an effective spin angular momentum tensor $\tau_{\mu\nu}{}^{\lambda}$, which leads to an additional term in the combined field equation.
- How to choose the tetrad field?
- What is the structure of the smoothed manifold defined in this way?
- In a cosmological setting, what is the magnitude of the additional term in the field equation and does it behave like dark energy?