Light propagation in the inhomogeneous universe

Krzysztof Bolejko University of Oxford

Paris, 22/11/2011

Backreaction

 $\mathbf{G}_{\alpha\beta}(\langle g_{\alpha\beta}\rangle) \neq \langle \mathbf{G}_{\alpha\beta}(g_{\alpha\beta})\rangle$

evolutionlight propagation

$$D_A^2 = \frac{\delta S}{\delta \Omega}$$

$$\frac{\mathrm{d}\delta S}{\mathrm{d}s} = 2\theta\delta S$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}s} + \theta^2 + |\sigma|^2 = -\frac{1}{2}R_{\alpha\beta}k^{\alpha}k^{\beta}$$

 $\frac{\mathrm{d}\sigma}{\mathrm{d}s} + 2\theta\sigma = C_{\alpha\beta\mu\nu}\epsilon^{*\alpha}k^{\beta}\epsilon^{*\mu}k^{\nu},$

$$\theta = \frac{1}{2}k^{\alpha}_{;\alpha} \qquad \sigma = \frac{1}{2}k_{(\alpha;\beta)}k^{(\alpha;\beta)} - \frac{1}{4}(k^{\alpha}_{;\alpha})^2$$

$$D_A^2 = \frac{\delta S}{\delta \Omega}$$

$$\frac{\mathrm{d}\delta S}{\mathrm{d}s} = 2\theta\delta S$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}s} + \theta^2 + |\sigma|^2 = -\frac{1}{2}R_{\alpha\beta}k^{\alpha}k^{\beta}$$

 $\frac{\mathrm{d}\sigma}{\mathrm{d}s} + 2\theta\sigma = C_{\alpha\beta\mu\nu}\epsilon^{*\alpha}k^{\beta}\epsilon^{*\mu}k^{\nu},$

R. K. Sachs Proc. Roy. Soc. London A 264 309 (1961)

$$\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -(|\sigma|^2 + \frac{1}{2}R_{\alpha\beta}k^{\alpha}k^{\beta})D_A.$$

$$\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -(|\sigma|^2 + \frac{1}{2}R_{\alpha\beta}k^{\alpha}k^{\beta})D_A.$$

- $\,$ matter fluctuations: $\,\delta\,$
- ${\scriptstyle
 m {\scriptstyle I}}$ shear: σ
- evolution: s(z)

 $\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -\frac{1}{2} R_{\alpha\beta} k^{\alpha} k^{\beta} D_A.$

 $\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -\frac{1}{2} R_{\alpha\beta} k^{\alpha} k^{\beta} D_A.$

 $R_{\alpha\beta}k^{\alpha}k^{\beta} = \rho(1+z)^2$

 $\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -\frac{1}{2} R_{\alpha\beta} k^\alpha k^\beta D_A.$

 $R_{\alpha\beta}k^{\alpha}k^{\beta} = \rho(1+z)^2$

 $\rho = \rho_0(z) + \delta\rho(z)$

 $\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -\frac{1}{2} R_{\alpha\beta} k^{\alpha} k^{\beta} D_A.$

 $R_{\alpha\beta}k^{\alpha}k^{\beta} = \rho(1+z)^2$

 $\rho = \rho_0(z) + \delta\rho(z)$ $\mathrm{d}s$ $\frac{dz}{dz} = -\frac{1}{(1+z)^2 H(z)}$

http://gavo.mpa-garching.mpg.de/Millennium/

Millennium

 $\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -\frac{1}{2} R_{\alpha\beta} k^{\alpha} k^{\beta} D_A.$

 $R_{\alpha\beta}k^{\alpha}k^{\beta} = \rho(1+z)^2$

 $\rho = \rho_0 + \delta\rho \qquad \qquad \langle \delta\rho \rangle = 0$

Millennium

$$\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -(|\sigma|^2 + \frac{1}{2}R_{\alpha\beta}k^{\alpha}k^{\beta})D_A.$$

- $\,$ matter fluctuations: $\,\delta\,$
- ho shear: σ
- evolution: s(z)

$$\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -(|\sigma|^2 + \frac{1}{2}R_{\alpha\beta}k^{\alpha}k^{\beta})D_A.$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}s} + 2\theta\sigma = C_{\alpha\beta\mu\nu}\epsilon^{*\alpha}k^{\beta}\epsilon^{*\mu}k^{\nu},$$

$$\frac{\mathrm{d}z}{\mathrm{d}s} = -(1+z)^2 H(z)$$

 $C = \sum_i C_i =$ $\sum_{i=1}^{N} \frac{1}{2} \left(\frac{b_i}{R_i}\right)^2 \left(\rho - \bar{\rho}\right)$ $\rightarrow -\sum_i 3b_i \frac{m_i}{r_i^5}$

$$\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -(|\sigma|^2 + \frac{1}{2}R_{\alpha\beta}k^{\alpha}k^{\beta})D_A.$$

- ${}_{ullet}$ matter fluctuations: $\delta(z)$
- ${}_{{}_{\!\!\!\!\!\!\!\!}}$ shear: $\sigma(z)$
- evolution: s(z)

Lemaître–Tolman model

$$ds^{2} = c^{2}dt^{2} - \frac{R_{r}^{2}(r,t)}{1+2E(r)} dr^{2} - R^{2}(t,r) \left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right),$$

FLRW limit

$$ds^{2} = c^{2}dt^{2} - \frac{a^{2}(t)}{1 - kr^{2}} dr^{2} - a^{2}(t)r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right).$$

LT Swiss Cheese model

Log-normal PDF

Density along a random l.o.s.

Millennium

Log-normal PDF

LT Swiss Cheese model

Density along a random l.o.s.

Extreme LT Swiss Cheese model

Extreme LT Swiss Cheese model

Millennium: δ_{ρ} , δ_H

 $\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -\frac{1}{2}\rho(1+z)^2 D_A.$

 $\rho = \rho_b (1 + \delta)$

 $H = H_b(1 + \delta_H)$

Millennium: δ_{ρ} , δ_H

 $C = \sum_i C_i =$ $\sum_{i}^{N} \frac{1}{2} \left(\frac{b_i}{R_i}\right)^2 \left(\rho - \bar{\rho}\right)$ $\rightarrow -\sum_i 3b_i \frac{m_i}{r_i^5}$

$$\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -(|\sigma|^2 + \frac{1}{2}R_{\alpha\beta}k^{\alpha}k^{\beta})D_A.$$

- $\,$ matter fluctuations: $\,\delta\,$
- ${\scriptstyle
 m {\scriptstyle I}}$ shear: σ
- evolution: s(z)

$$\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -(|\sigma|^2 + \frac{1}{2}R_{\alpha\beta}k^{\alpha}k^{\beta})D_A.$$

- $\,$ matter fluctuations: $\,\delta\,$
- ${\scriptstyle
 m {\scriptstyle 9}}$ shear: σ
- evolution: s(z)

$$\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -(|\sigma|^2 + \frac{1}{2}R_{\alpha\beta}k^{\alpha}k^{\beta})D_A.$$

- $\,$ matter fluctuations: $\,\delta\,$
- $\, {\scriptstyle ullet} \,$ shear: $\, \sigma \,$
- evolution: s(z)

$$\frac{\mathrm{d}^2 D_A}{\mathrm{d}s^2} = -(|\sigma|^2 + \frac{1}{2}R_{\alpha\beta}k^{\alpha}k^{\beta})D_A.$$

- $\,$ matter fluctuations: $\,\delta\,$
- ${\scriptstyle
 m {\scriptstyle 9}}$ shear: σ
- evolution: s(z)

