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The Problem

The large scale properties of our Universe are usually
described in the context of a homogeneous and isotropic FLRW
space-time.

However:

The real Universe is not exactly homogeneous and isotropic
neither in its present state (classic inhomogeneities)
nor in its primordial state (quantum fluctuations)



Conventional Assumption and its Issues

Inhomogeneities are small on large scales, and the
homogeneous Einstein equations provide a sufficiently good
description of the averaged cosmological geometry.
But.....

Inhomogeneities not always small!
⇓

Inflation can amplify quantum fluctuations up to be
comparable with the background (〈δφ2〉 ∼ 〈φ2〉), making
their effects non negligible (inflationary backreaction
(Mukhanov, Abramo, Brandenberger (1997)).

Inhomogeneities are there! We have to take in
consideration their impact for a consistent comparison of
the theory with the observational data.



Fitting Problem

Inhomogeneities could affect in a non-trivial way the
cosmological evolution.

How to determine the true dynamical evolution of the averaged
cosmological geometry?
Answer not obvious!

Differential operators and averaging procedure do not commute
⇓ (Ellis (1984))

Averaged Einstein equations 6= Einstein equations for the
averaged geometry.

The dynamic of the averaged geometry is affected by the
so-called ”backreaction terms”.



Gauge Issue

One needs a well defined averaging procedure for
smoothing-out the perturbed (non-homogeneous) geometric
parameters.

The computation of these averages is affected in principle by a
well-known ambiguity due to the possible choice of different
“gauges”.

Standard averaging formalism (Buchert (2000))

〈S〉D =

∫
D d3x

√
|γ|S∫

D d3x
√
|γ|

Different gauge⇒ different results!

What does it mean to choose a gauge for this standard
formalism? See later!!



Buchert Equations, 1

Considering the synchronous gauge one can define, with
respect to an observer at rest in the cosmic medium, the
following effective equations for a dust universe (Buchert
(2000)) (

ȧD

aD

)2

=
8πG

3
ρeff

− äD

aD
=

4πG
3

(ρeff + 3peff )

with
VD =

∫
D

d3x
√
|γ| , aD = (VD/VD0)1/3



Buchert Equations, 2

ρeff = 〈ρ〉D −
1

16πG
(〈Q〉D + 〈R〉D)

peff = − 1
16πG

(
〈Q〉D −

1
3
〈R〉D

)
and

〈Q〉D =
2
3

(
〈Θ2〉D − 〈Θ〉2D

)
− 2〈σ2〉D

the kinematical backreaction term.
Θ is the volume expansion, σ2 the shear scalar, and R the
spatial Ricci scalar.
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Gauge freedom in a FLRW universe, 1

Let us consider a cosmological background sourced by a scalar
field φ and described by the simple four-dimensional action

S =

∫
d4x
√
−g
[

R
16πG

− 1
2

gµν∂µφ∂νφ− V (φ)

]
with spatially flat FLRW background geometry

ds2 = −dt2 + a(t)2 δij dx idx j



Gauge freedom in a FLRW universe, 2

The background fields {φ, gµν} can be expanded in non-homogeneous
perturbations as follows:

φ(t , ~x) = φ(0)(t) + δφ(t , ~x),

g00 = −1− 2α, gi0 = −a
2

(β,i + Bi ) ,

gij = a2
[
δij (1− 2ψ) + DijE +

1
2

(χi,j + χj,i + hij )

]
,

where Dij = ∂i∂j − δij (∇2/3).
One obtains 11 degrees of freedom which are in part redundant.
To obtain a set of equations (Einstein equations + equation of motion of φ)
well defined, order by order, we have to set to zero two scalar perturbations
among δφ, α, β, ψ and E , and one vector perturbation between Bi and χi .



Gauge freedom in a FLRW universe, 3

The choice of such variables is called a choice of gauge.

For the scalar sector we may have:
ψ = 0, E = 0 Uniform Curvature Gauge
β = 0, E = 0 Longitudinal Gauge
α = 0, β = 0 Synchronous Gauge
δφ = 0, β or ψ or E = 0 Uniform Field Gauge
etc.



Gauge trasformation vs Gauge Invariant variables, 1

To connect different gauge we need an infinitesimal coordinates
transformation.
This can be parametrized by a first-order, εµ(1), and a
second-order, εµ(2), vector generator, and is given by (Bruni,
Matarrese, Mollerach, Sonego (1997)):

xµ → x̃µ = xµ + εµ(1) +
1
2

(
εµ(1),νε

ν
(1) + εµ(2)

)
.

Under the associated GT old and new fields are evaluated at
the same space-time point x and a tensor T changes as

T (1) → T̃ (1) = T (1) − Lε(1)
T (0),

T (2) → T̃ (2) = T (2) − Lε(1)
T (1) +

1
2

(
L2
ε(1)

T (0) − Lε(2)
T (0)

)



Gauge trasformation vs Gauge Invariant variables, 2

Request: Physics results should not depend on the gauge
chosen to describe these.

Answer: Gauge Invariant (GI) formalism (Bardeen (1980), for a
review see: Mukhanov, Feldman, Brandenberger(1992)).

Physically meaningful variable↔ GI variable.

A GI variable F is defined as a function of our perturbations
which takes always the same value independently of the gauge
chosen

F (δφ, α, β, .....)→ F (δφ̃, α̃, β̃, .....) = F (δφ, α, β, .....)



Gauge trasformation vs Gauge Invariant variables, 3

Scalar Power Spectrum
The scalar power spectrum associated with a model of inflation
is defined using the GI curvature perturbation ξ. Such
perturbation is given, to first order, by

ξ(1) =
H
φ̇

Q(1) with Q(1) = δφ(1) +
φ̇

H

(
ψ(1) +

1
6
∇2E (1)

)
where Q(1) is the first order GI Mukhanov variable (Mukhanov
(1988)). So one obtains

Pζ(k) =
k3

2π2

(
H
φ̇

)2

|Qk |2



Covariant averaging prescription, 1

Depending on the context in which the backreaction is considered, there are
two types of averaging procedure: spatial average of classical variables, and
(vacuum) expectation values of quantized fields.

In both cases, one has to face the problem of the gauge dependence of the
results.

Spatial average of classical scalar variable ≡ average with respect to the
observers seat on a hypersurface defined by another scalar A(x) through the
condition A(x) = A0.

In this way

the scalar A(x) (with time-like gradient) determines the temporal
boundary and the observers which perform the measure.

another function B(x) (with space-like gradient) determines the spatial
boundary by the coordinate condition B(x) < r0.



Covariant averaging prescription, 2

The averaging prescription is so defined as (Gasperini, GM, Veneziano
(2009,2010)):

〈S〉A0,r0 =
F (S,Ω)

F (1,Ω)
=

∫
d4x
√
−g S uµ∇µθ(A(x)− A0)θ(r0 − B(x))∫

d4x
√
−g uµ∇µθ(A(x)− A0)θ(r0 − B(x))

and, in the bar coordinates where A is homogeneous, one obtains

〈S〉A0,r0 =

∫
ΣA0

d3x
√
|γ(t0, ~x)| S(t0, ~x) θ(r0 − B(h(t0, ~x), ~x)∫

ΣA0
d3x

√
|γ(t0, ~x)| θ(r0 − B(h(t0, ~x), ~x))

where we have called t0 the time t̄ when A(0)(̄t) takes the constant values A0.
The averaging prescription will be strictly gauge invariant only if also B(x) is a
scalar.
On the other hand, considering the limit of an infinite spatial volume the
possible ”residual” gauge dependence goes to zero and we obtain a gauge
invariant average (Gasperini, G.M., Veneziano (2009), G.M. (2011)).



Covariant averaging prescription, 3

Going back to the standard averaging prescription!

The Buchert averaging formalism

〈S〉D =

∫
D d3x

√
|γ|S∫

D d3x
√
|γ|

can be seen as a particular case of

〈S〉A0,r0 =

∫
ΣA0

d3x
√
|γ(t0, ~x)| S(t0, ~x) θ(r0 − B(h(t0, ~x), ~x))∫

ΣA0
d3x

√
|γ(t0, ~x)| θ(r0 − B(h(t0, ~x), ~x))

,

where D is defined by θ(r0 − B(h(t0, ~x), ~x)), and we take a
scalar A(x) which is homogeneous in the particular gauge
chosen to make the averages.

To fix the gauge in the standard formalism corresponds to fix
the observers with respect to which we perform the average.



Effective Equation for the Cosmological Backreaction:
a Covariant and Gauge Invariant approach, 1

We are now in the position to give a covariant and gauge invariant
generalization of the effective equations for the cosmological backreaction.
Considering the covariant averaging prescription defined and deriving with
respect to A0, we can obtain the gauge invariant generalization of the
Buchert-Ehlers commutation rule (Buchert, Ehlers (1997)) as

∂〈S〉A0

∂A0
=

〈
∂µA∂µS
∂µA∂µA

〉
A0

+

〈
S Θ

(−∂µA∂µA)1/2

〉
A0

−〈S〉A0

〈
Θ

(−∂µA∂µA)1/2

〉
A0

.

Starting from this, and using a scalar form of the ADM Hamiltonian constraint
and Raychaudhuri’s equation, we obtain the following generalization for the
effective equations (see Gasperini, G.M., Veneziano (2010), for details)(

1
aeff

∂ aeff

∂A0

)2

=
8πG

3

〈
ε

ZA

〉
A0

− 1
6

〈
Rs

ZA

〉
A0

− 1
9

〈Θ2

ZA

〉
A0

−

〈
Θ

Z 1/2
A

〉2

A0

+
1
3

〈
σ2

ZA

〉
A0

=
1
9

〈
Θ

Z 1/2
A

〉2

A0



Effective Equation for the Cosmological Backreaction:
a Covariant and Gauge Invariant approach, 2

and

− 1
aeff

∂2 aeff

∂A2
0

=
4πG

3

〈
ε+ 3π

ZA

〉
A0

− 1
3

〈
∇ν(nµ∇µnν)

ZA

〉
A0

+
1
6

〈
nµ∂µZA

Z 2
A

Θ

〉
A0

−2
9

〈Θ2

ZA

〉
A0

−

〈
Θ

Z 1/2
A

〉2

A0

+
2
3

〈
σ2

ZA

〉
A0

with ZA = −∂µA∂µA and where Rs is a generalization of the intrinsic scalar
curvature, Θ = ∇µnµ the expansion scalar and σ2 the shear scalar with
respect to the observer. We then define

ε = ρ− (ρ+ p)
(

1− (uµnµ)2
)
,

π = p − 1
3

(ρ+ p)
(

1− (uµnµ)2
)

with uµ the 4-velocity comoving with the perfect fluid and ρ and p are,
respectively, the (scalar) energy density and pressure in the fluid’s rest frame.
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Gauge invariant averaging for the quantum BR, 1

In the limit of an infinite spatial volume the covariant average
prescription defined is strictly gauge invariant.
In this limit the step-like boundary disappears, and we obtain:

〈S〉A0 =

∫
ΣA0

d3x
√
|γ(t0, x)| S(t0, x)∫

ΣA0
d3x

√
|γ(t0, x)|

.

This results can be generalized to the quantum case.
Expectation values of quantum operators can be extensively
interpreted (and re-written) as spatial integrals weighted by the
integration volume V , according to the general prescription

〈. . . 〉 → V−1
∫

V
d3x (. . . ) ,

where V extends to all three-dimensional space.



Gauge invariant averaging for the quantum BR, 2

In this way the above gauge invariant prescription becomes

〈S〉A0 =
〈
√
|γ(t0, x)| S(t0, x)〉
〈
√
|γ(t0, x)|〉

where it is important to note that the two entries of this ratio are
not separately gauge invariant, but the ratio itself, equivalent to
the above prescription, is indeed invariant.

Following the results above one can consider an effective scale
factor aeff = 〈

√
|γ̄| 〉1/3 and obtain a quantum gauge invariant

version of the effective cosmological equations for the averaged
geometry.



Gauge invariant BR in chaotic m2φ2 inflation, 1

Taking advantage of these results we want evaluate the
backreaction of quantum fluctuations during a chaotic model of
inflation. Such analysis will be GI but dependent on the
different observers intrinsically used in the GI construction.

Considering the long wavelength (LW) limit, one obtains a
simple expression for the first effective equation for the
cosmological backreaction(

1
aeff

∂ aeff

∂A0

)2

= H2
[
1 +

2
H
〈ψ̄ ˙̄ψ〉 − 2

H
〈 ˙̄ψ(2)〉

]
This is the starting point of our analysis.



Gauge invariant BR in chaotic m2φ2 inflation, 2

Let us define our observers through a scalar field A homogeneous in a
particular gauge.

We have a correspondence between a class of gauges and a class of
observers with their physical properties.

In the long wavelength limit such physical properties are characterized by the
time gauge condition on the vector generator ε0

(1) and ε0
(2) to go from a

general gauge to the class of gauges chosen.

We can devide the observers in 3 different classes:

(a) the ones which correspond to gauges with ψ = 0, with trivially zero
backreaction.

(b) the ones which correspond to gauges with α = 0 (or ϕ = 0 (UFG)), which
are geodesic, or free falling, observers.

(c) the ones which correspond to the gauges with β = 0 and E = 0
(longitudinal gauge), which have zero scalar and tensor shear. These are
called isotropic observers and see an inhomogeneous and isotropic space.



Geodesic Observers, 1

The dynamic of a free falling observer is determined by the
equation tµ = nν∇νnµ = 0 for its velocity nµ.

The scalar field A(x) associated with this observer is, for
example, the one homogeneous in the SG (see G.M. (2011) for
details).

In general the condition for a scalar field A(x) to be associated
with free falling observers at first order is given by (zero order
condition is trivially satisfied for any scalar)

d
dt

(
A(1)

Ȧ(0)

)
− α = 0 .



Geodesic Observers, 2

The coordinate transformations needed to go from a general
gauge to the SG one are characterized by

ε0(1) =

∫ t
dt ′α , ε0(2) = −α

∫ t
dt ′α +

∫ t
dt ′
(

2α(2)−α2
)

so for the free falling observer we have

ψ̄ = ψ + H
∫ t

dt ′α ,

ψ̄(2) = ψ(2) − Hα
∫ t

dt ′α− 1
2

(
Ḣ + 2H2

)[∫ t
dt ′α

]2

−
(

2Hψ + ψ̇
)∫ t

dt ′α +
H
2

∫ t
dt ′
(

2α(2) − α2
)



Geodesic Observers, 3

The backreaction results are gauge independent, so we can
choose the gauge in which performs the calculations at our
convenience. We consider the UCG (Finelli, G.M., Vacca,
Venturi (2004)) and we find that(

1
aeff

∂ aeff

∂A0

)2

= H2

[
1 +O

(
ε2
) 〈δφ2〉

M2
pl

]
,

No leading backreaction in the slow-roll parameter ε on the
effective Hubble factor induced by scalar fluctuations.

No leading backreaction in the slow-roll parameter ε on the
effective equation of state induced by scalar fluctuations. (see
later)



UFG Observers

The scalar associated to these observers is given by

A(x) = A(0) +
Ȧ(0)

φ̇
δφ+

Ȧ(0)

φ̇
δφ(2) +

Ȧ(0)

2φ̇2

(
Ä(0)

Ȧ(0)
− φ̈

φ̇

)
δφ2 .

The condition to have geodesic observers to first order
becomes

d
dt

(
δφ

φ̇

)
− α = 0 .

Such a condition is trivially satisfied in the LW limit and we have
similar result to second order.

The UFG observers are physically equivalent to the free falling
ones and experience the same backreaction



Isotropic Observers, 1

Let us consider the observers define by the scalar homogeneous in the
longitudinal gauge.

This is defined to first order by

A(x) = A(0) + Ȧ(0)

[
a
2
β +

a2

2
Ė
]

and is not fee-falling.

The shear scalar (neglecting tensor perturbations) is given by

(σ2)(0) = 0 , (σ2)(1) = 0

(σ2)(2) =
1

2a4Ȧ(0) 2

[
A(1)
,ij A(1),ij − 1

3
(∇2A(1))2

]
+

1
8a2

[
β,ijβ

,ij − 1
3

(∇2β)2
]

− 1
2a3Ȧ(0)

[
A(1)
,ij β

,ij − 1
3

(∇2A(1))(∇2β)

]
− 1

4a2Ȧ(0)
A(1)
,ij

˙̂hij +
1

8a
β,ij

˙̂hij +
1
32

˙̂hij
˙̂hij

where ĥij = 2DijE .



Isotropic Observers, 2

Considering the LG scalar in the evaluation of the shear scalar
we obtain a identically zero value.

In the same way also the shear tensor σµν turns out to be zero
when evaluated with respect to the LG observers.

As a consequence→ Θµν = 1
3hµνΘ

The expansion is seen as isotropic from all the observers
associated with the longitudinal gauge!

We call these the Isotropic Observers.



Isotropic Observers, 3

Using the UCG as starting point the coordinate transformations
needed to go to the SG are characterized by

ε0(1) =
a
2
β +

a2

2
Ė =

a
2
β , ε(1) =

E
2

= 0

ε(2) =
3
8

1
∇2

(
∂ i∂ j

∇2 −
1
3
δij
)
∂iβ ∂jβ ,

ε0(2) = a2ε̇(2) + aβ(2) − a
2
αβ − a

∂ i

∇2 (α∂iβ)

so for the isotropic observer we have

ψ̄ =
aH
2
β,

ψ̄(2) =
Ha
2

[
aε̇(2) + β(2) − ∂ i

∇2 (α∂iβ)

]
−aH

2
αβ−a2

8

(
Ḣ + H2

)
β2



Isotropic Observers, 4

and one obtains the following final result(
1

aeff

∂ aeff

∂A0

)2

= H2

[
1 +

3
5

Ḣ
H2
〈δφ2〉
M2

pl
+O

(
Ḣ2

H4

)
〈δφ2〉
M2

pl

]
.

Leading backreaction, in the slow-roll parameter, on the
effective Hubble factor induced by scalar fluctuations!

The observers associated to the longitudinal gauge foliation,
which are not free-falling, but see an inhomogeneous isotropic
space, experiences a backreaction such that H2

eff < H2.

A valuable information is also given by the effective equation of
state which is defined with respect to such observers.
Therefore we want now study the quantity weff = peff/ρeff .



General BR in a slow-roll inflationary model
Let us start with a more general result valid for any observer and slow-roll
inflationary models.
We consider for the effective Hubble factor the following relation(

1
aeff

∂ aeff

∂A0

)2

= H2

[
1+

(
c

Ḣ
H2 + d

Ḣ2

H4 +O

(
Ḣ3

H6

))
〈δφ2〉
M2

pl

]
,

where c and d are parameters which encodes the possible non zero
backreaction at first and second order in the slow-roll approximation.
Then, from the consistency between the effective equations for the averaged
geometry, one obtains

− 1
aeff

∂2 aeff

∂A2
0

= −Ḣ−H2−H2

[
c

Ḣ
H2 +

(
d − c

2

) Ḣ2

H4 + c
Ḧ
H3 +O

(
Ḣ3

H6

)]
〈δφ2〉
M2

pl

and it is easy to see that the effective equation of state to the first non trivial
order is given by

weff =
peff

ρeff
= −1− 2

3
Ḣ
H2 +

[
(c − c2)

Ḣ2

H4 −
2
3

c
Ḧ
H3 +O

(
Ḣ3

H6

)]
〈δφ2〉
M2

pl
,



BR on the effective equation of state

For the isotropic observers and a m2φ2 chaotic model c = 3/5
and we obtain the following result (Ḧ/H3 is, for this case, of
third order in the slow-roll parameter ε):

weff =
peff

ρeff
= −1 +

2
3
ε+

[
−24

25
ε2 +O

(
ε3
)] 〈δφ2〉

M2
pl

.

The correction to weff goes in the direction of a more de Sitter
like equation of state.

Summarizing the result, these isotropic non free-falling
observers see a slightly smaller expansion rate, more de Sitter
like.

On the other hand, for the geodesic observers c = 0 and there
is no leading BR on the effective equation of state.



Is Quantum BR important?

For a massive chaotic model in the LW limit and Hi = H(ti )� H, one has

〈δφ2〉
M2

pl
' − 1

24π2

H6
i

M2
plH2Ḣ

∼ H4
i

H2M2
pl

ln a

If the coefficient of 〈δφ2〉 is not zero (as for the isotropic observers), quantum
backreaction appears with a secular term related to the infrared growth of
inflaton fluctuations. On the other hand such a growth gives a negligible
effect whenever 〈δφ

2〉
M2

pl
� ε−1.

In general non negligible effects could appear at the end of inflation (H ∼ m)
only for H(ti ) ∼ (m2Mpl )

1/3. Such values give a typical number of e-folds of
the order of O(104), for Mpl = 105m, and correspond to the case where
non-linear corrections become really important (Finelli, G.M., Starobinsky,
Vacca, Venturi (2009), Finelli, G.M., Vacca, Venturi (2006)).



Open Problems

Quantum backreaction in multi fields inflationary models
where a more ”physical” definition of the observer is
possible.

Quantum backreaction in a growing-curvature model.
Impact of the backreaction on the possible graceful exit
from the model.

Quantum backreaction at/after the end of inflation
(preheating/reheating, relativistic era, etc.).

Possible application of the light-cone averaging formalism
(see Nugier talk) to the early Universe.



Conclusions

We have proposed a general-covariant and gauge invariant
formulation of the so-called “cosmological backreation”

We have applied our gauge-invariant observer-dependent
approach to the evaluation of backreaction effects induced
by long wavelength scalar fluctuations generated by an
inflationary era in the early universe.

Different observables, non local but gauge invariant, and
the associated measurement can probe for some of them
backreaction effects and for others no backreaction at all.

Not Wrong! The observables are observers dependent!!
Different observers⇐⇒ different features of the Universe
dynamics.



THANKS FOR THE ATTENTION!


