The symphony of AGN and stellar feedback

Dark Matters Birthday Conference for Joe Silk

Collaborators: Sam Geen, Yohan Dubois, Marta Volonteri, Salvatore Cielo, Alexander Wagner, Zack Dugan Max Planck Institute for Astrophysics, Garching

Overview

Learn to walk before you try to run

Overview

Learn to walk before you try to run Study how AGN interacts with Molecular Clouds

Step 1 : Jet versus Radiatively driven WindsCielo, Bieri et al. 2017, submitted

Step 2 : AGN outflow shocks on Molecular Clouds Dugan, Gaibler, Bieri et al. arXiv:1608.04280

Step 3: AGN outflows colliding with Molecular Clouds

Bieri, Geen et al., in prep.

Comparing Models with Observations

Comparing Models with Observations

Positive Feedback from AGN?

Contour map of the eastern lobe of NGC 541 overlaid on a slightly smoothed stellar continuum image

Rodighiero et al. 2011

Jet versus Radiatively driven Winds

- RAMSES : Grid based hydrodynamic solver with mesh refinement (Teyssier 2002)
- Turbulent, inhomogeneous **multi-phase** interstellar medium of a gas-rich highredshift galaxy in terms of density structure and clump size (Wagner + Bicknell 2011)
- Caveats: No gravity, no cooling

Jet versus Radiatively driven Winds

Jet:

- Hydro source term, cylindrical base, orientation can be chosen
- Steady density/momentum/energy flux
- $\rho_{\rm jet} = 0.01 \rho_{\rm ambient}$
- Straight beam that is self-collimated by internal shocks

Radiation:

- RAMSES-RT: Uses moment method to solve radiative transfer in RAMSES (Rosdahl et al. 2013, Rosdahl & Teyssier 2015)
- Solves non-equilibrium evolution of ionisation fractions of HII, HeII, HeIII
- Radiation pressure + diffusion of multi-scattering IR radiation included
- AGN SED with 5 photon groups, IR \rightarrow UV

Cloud Evolution in different AGN feedback

Cloud Evolution in different AGN feedback

Radiation:

Jet:

AGN Outflow shocks on Molecular Clouds

- Bonnort-Ebert Spheres: non-uniform density profile; pressure balance with
- ambient medium \rightarrow more realistic description for dense clumps of MC
- Various wind velocities/densities, highly pressurised
- Steady density/momentum/energy flux

AGN Outflow shocks on Molecular Clouds

- **Ram pressure** is most important factor determining fate of MC
- High ram pressure : increased fragmentation and decreased SF
 - SF on shorter timescale
 - Increased velocities of newly formed stars
- Ram pressure threshold above which no stars are formed

AGN Outflow shocks on Molecular Clouds

- **Ram pressure** is most important factor determining fate of MC
- High ram pressure : increased fragmentation and decreased SF
 - SF on shorter timescale
 - Increased velocities of newly formed stars
- Ram pressure threshold above which no stars are formed

Caveats:

- Molecular Clouds are turbulent supported.
- Stars emit radiation, eject winds, and explode in a SNe.

Clouds are turbulent and present large density contrasts and a complex structure induced by supersonic turbulence

- Radiative magnetohydrodynamics simulations (RAMSES-RT)
- Cloud in initial thermal equilibrium and surrounded by warm neutral medium
- Considering spherical cloud with profile $\rho = \rho 0/(1 + (r/r_0)^2)$
- Thermal to gravitational energy is initially 1%
- Velocity field presents a Kolmogorov power spectrum with random phase
- Kinetic energy is about 100% of gravitational energy
- Sink particles representing clusters of stars
- Emitting radiation into 5 groups (UV/optical/IR)
- Wind ejections and SNe explosions

- Cloud used represents observed clouds in the Milky Way
- Tested by comparing cumulative PDF of Planck and Herschel data

No AGN jet

AGN jet/wind (1 H/cc, 300 km/s) wind direction

- High ram pressure: Sinks can form quicker
 —> Wind/radiation feedback
 also starts earlier
- Interplay between timing of AGN wind arrival and first star formation
- Similar to previous studies higher ram pressure leads to less stars formed

Conclusion

- Jet/Wind feedback leads more likely to positive feedback in MC
- Ram pressure of AGN jet/wind important in defining fate of MC
- Stellar feedback important in determining effect AGN jet/wind has on MC
- Stellar feedback is needed to define how efficient AGN feedback can be

If it exists in the real Universe you should be able to simulate it

Thank you Joe