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Matter calculations <

PRECISION COSMOLOGY....
First numerical CMB calculation (to go through recombination)

PRIMEVAL ADIABATIC PERTURBATION
IN AN EXPANDING UNIVERSE*
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ABSTRACT

The general qualitative behavior of linear, first-order density perturbations in a Friedmann-Lemaitre
cosmological model with radiation and matter has been known for some time in the various limiting
situations. An exact quantitative calculation which traces the entire history of the density fluctuations is
lacking because the usual approximations of a very short photon mean free path before plasma re-
combination, and a very long mean free path after, are inadequate. We present here results of the direct
integration of the collision equation of the photon distribution function, which enable us to treat in detail
the complicated regime of plasma recombination. Starting from an assumed initial power spectrum well
before recombination, we obtain a final spectrum of density perturbations after recombination. The
calculations are carried out for several general-relativity models and one scalar-tensor model. One can
identify two characteristic masses in the final power spectrum: one is the mass within the Hubble radius
¢t at recombination, and the other results from the linear dissipation of the perturbations prior to re-
combination. Conceivably the first of these numbers is associated with the great rich clusters of galaxies,
the second with the large galaxies. We compute also the expected residual irregularity in the radiation
from the primeval fireball. If we assume that (1) the rich clusters formed from an initially adiabatic
perturbation and (2) the fireball radiation has not been seriously perturbed after the epoch of recombina-
tion of the primeval plasma, then with an angular resolution of 1 minute of arc the rms fluctuation in
antenna temperature should be at least 8T/T = 0.00015.

1965+5...
a) Purpose
The possible discovery of radiation from the primeval fireball opens a promising lead

toward a theory of the origin of galaxies. This primeval radiation would serve, first, to
fix an epoch at which nonrelativistic bound systems like galaxies can start to develop
(Peebles 1965a), and second, to impress on the pewer spectrum of initial density fluctua-
tions characteristic lengths and masses (Gamow 1948; Peebles 19654, 1967a; Michie
1967; Silk 1968). These characteristic features in the power spectrum hopefully result
from all the complicated details of the evolution of the Universe affer the initial power
spectrum is arbitrarily set at some very early epoch. If one can make a reasonable argu-
ment for a coincidence of these features with observed phenomena, it will provide an
important encouragement and guide to the further development of the theory. A more
direct observational test of these processes might be provided by the residual small-scale
fluctuations in the microwave background (Peebles 1965b; Sachs and Wolfe 1967; Silk
1968; Wolfe 1969 Longair and Sunvaev , If we assume that this radiation has not
been further scattered (Dautcourt 1969).

I. INTRODUCTION

* Research supported in part at Princeton by the National Sciende Foundation and the Office of
Naval Research of the U.S. Navy, and at the California Institute of Tecknology by the National Science
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According to Zel’dovich (1967) there are two kinds of perturbations that are of inter-
est: initial isothermal perturbations and initially adiabatic perturbations. It has been

suggested that the globular clusters are the remnants of an isothermal perturbation in
the early Universe (Peebles and Dicke 1968; Peebles 1969). Our purpose here is to discuss
in some detail the evolution of adiabatic density fluctuations in the primeval-fireball
nictura

An initially adiabatic perturbation evolves through four regimes: (¢) When the age ¢
of the Universe is much less than N/c, where N is the characteristic scale of the perturba-
tion, a fractional perturbation dp/p to the total mass density grows with time, but the
entropy per nucleon is conserved (hence adiabatic). (b)) When A < ¢, the perturbation
oscillates like an acoustic wave. (¢) As the Universe expands through the recombination
phase, the photon mean free path becomes comparable to X, and the oscillating wave is
attenuated, leaving some residual perturbation in the matter distribution. (¢) When
T < 2500° K, recombination is sufficiently complete that radiation drag on the matter
may be neglected, and the residual perturbation may start to grow into bound systems
like protogalaxies. .

[ a.D0 oen d NCINEC 0 [ cl d.(lla d DE 1rDa OI) VY ci d Cadl g cI_D
‘L Lifshitz (1946). The very complicated regime (¢) has been considered by a number of
people in a variety of approximations, with the general conclusion that initially adiabatic
perturbations on a characteristic mass scale <10'-10" R, are strongly attenuated.
This problem was first considered in approximations to first order in the photon mean
free time f. independently by Michie (1967), Peebles (1967a), and Silk (1968). It has
since been considered by Bardeen (1968) in the first twenty moments of the radiation
distribution function, and by Field (1970a), who solves the problem to all orders in ¢,
when the expansion of the Universe may be neglected. However, these approximation
schemes run afoul of the enormous variation and rate of variation of the photon mean
free path through the epoch of recombination. As a result, previous workers on this
subject (Peebles 1967a; Michie 1967; Silk 1968; Field and Shepley 1968) could give only
qualitative estimates of the different characteristic masses involved here. To obtain a
ipti he evolution through this complica hase of recombina-
tion, we have resorted to direct numerical integration of the collision equation for the
photon distribution fumnction.
The more quantitative results of the present calculation are compared with the earlier
estimates in § VII. We also discuss there the possible significance of these results. In
§ IT we derive the differential equations to be integrated. It is impractical to integrate
the collision equation numerically in the very early Universe because the photon mean
free path ¢, is so short, but here it becomes a good approximation to describe the radia-
tion as a fluid with viscosity. This description of the radiation was used in all the previous
work (Lifshitz 1946; Michie 1967; Silk 1968; Field and Shepley 1968), and is indeed a
good approximation in this early epoch. The fluid description of radiation is equivalent
to an expansion and integration of our collision equation to first order in Z.. In § III we
give the resulting equations valid to first order in #, and we present solutions to these
approximate equations under various limiting conditions. These results are used to start
the numerical integration and to check numerical accuracy. In § IV we consider the
residual perturbation to the microwave background. The numerical integrations are
described in §§ V and VI.

b) Assumptions and Approximations

In the following calculations we use either conventional general-relativity theory,
with cosmological constant A equal to zero, or the scalar-tensor theory (Brans and Dicke
1961). We start from a homogeneous, isotropic cosmological model, in which the present

parameters are
Hy'=1X10%years, 7T,=27°K. (1)
Frangois R. Bouchet - Dark Matters/Joe75@IAP, 12/12/2017




CDM & scale-invariant initial conditions in some detail:
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ABSTRACT

We present detailed calculations of the temperature fluctuations in the cosmic background radiation for
universes dominated by massive collisionless relics of the big bang. We assume an initially adiabatic constant
curvature perturbation spectrum. In models with cold dark matter, the simplest hypothesis—that galaxies follow
the mass distribution—leads to small-scale anisotropies which exceed current observational limits if & < 0,2
h~*. Since low values of § are indicated by dynamical studies of galaxy clustering, cold particle models in
which light traces mass are probably incorrect. Reheating of the pregalactic medium is unlikely to modify this
conclusion. In cold particle or neutrino-dominated universes with € = 1, our predictions for small-scale and
quadrupole anisotropies are below current limits. In all cases, the small-scale fluctuations are predicted to be

~ 10% linearly polarized.

Subject headings: cosmic background radiation — cosmology — galaxy formation

I. INTRODUCTION

Current observational constraints on anisotropies in the
cosmic background radiation (CBR) and on the clustering of
galaxies have considerably narrowed the range of acceptable
models for galaxy formation. The recent limits of Uson and
Wilkinson® (1984a,5) of (AT/T) < 2.9 x 107° at angular
scales of 4/5 essentially rule out all models with an adiabatic
primordial fluctuation spectrum in which the present mean
mass density of the universe is composed entirely of baryonic
matter (Wilson and Silk 1981; Wilson 1983).

In neutrino-dominated universes this difficulty may be
avoided (Bond, Efstathiou, and Silk 1980; Doroshkevich et al.
1980). However, detailed computations of the coherence length
in the mass distribution (Bond and Szalay 1981, 1983; Peebles
1982) combined with N-body simulations of galaxy clustering
(White, Frenk, and Davis 1983) show that the neutrino picture
conflicts with observations of the galaxy distribution unless
galaxies formed at uncomfortably recent epochs. Similar con-
clusions follow from considerations of large-scale streaming
motions (Kaiser 1983a).

Models in which the dark matter is cold (e.g., axions,
photinos, etc.) preserve many of the salient features of earlier
hierarchical clustering theories and offer a promising way of
overcoming some of the difficulties associated with massive
neutrinos (e.g., Blumenthal er /. 1984). In the simplest cold
particle schemes, galaxies are assumed to be good tracers of
the underlying mass distribution. If this is the case, then
observations of the peculiar velocities between galaxy pairs
imply a low-density cosmological model with @ = 0.14 x 2*!

! Physics Department, Stanford University.

Institute for Theoretical Physics, University of California, Santa
Barbara.

*Institute of Astronomy, Cambridge University.

“This is their 95% “field” limit which can be directly compared with
our calculations and is 1.5 times their quoted ““sky” limit (see § IIc).

"Cosmic Microwave Background, then and now"

(Davis and Peebles 1983; Bean et al. 1983). N-body simula-
tions (Davis ef al. 1984) do indeed show that a low-density
model with £ = 0.2 can match many features of the observed
clustering pattern, whereas numerical simulations with @ = 1
lead to excessive peculiar velocities and only reproduce the
observed shape of the galaxy correlation function £(r) if
Hubble’s constant is unreasonably small (A =~ 0.2, where A is
Hubble’s constant in units of 100 km s~! Mpc™1).
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FiG6. 1.—Temperature fluctuation as a function of angular scale. Curves
C1-C3 show results for cold particle models with the following parame-
ters: (Cl) =102, h=05 (C2) =02 &=075 (C3) &=10,
h = 0.75. The curve labeled (N) shows results for a massive neutrino
model with @ = 1.0, & = (.75, normalized so that £(0,z,,) = 1 at z;; = 3.
In all cases @y =0.03. The solid lines show our predictions for the
experimental setup used by Uson and Wilkinson (see eq. [4]). In case (C1),
we compare their procedure with the results expected in a standard
‘beam-switching experiment shown as the dashed line. The 95% confidence
upper limit of Uson and Wilkinson (19845) is marked by the top of the
arrow. The theoretical cutves have been calculated assuming a Gaussian
‘beam response of half-power width 175,
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ABSTRACT

The fine-scale anisotropy of the cosmic microwave background radiation has been studied in cosmological
models with a scale-invariant primordial adiabatic density fluctuation spectrum that are dominated by cold,
weakly interacting particles such as axions or photinos. Normalization of the present fluctuation spectrum to the
observed galaxy distribution, equivalent to the assumption that mass and light are correlated on large scales,
results in excessive temperature anisotropy when compared to a recent upper limit on 4’5 unless the density
parameter £, exeeeds 0.4 (50 km s~ Mpc~! /H,). Combining this result with the requirement that the universe
be at least 13 billion years old, we conclude that if the cosmological constant is zero, 0.4 < @, < 1 and 60

kms ! Mpc' = Hy 2 50 kms™' Mpc™ .

Subject headings: cosmic background radiation — cosmology

Primordial nucleosynthesis and grand unification are gener-
ally considered to be desirable aspects of the evolution of the
early universe, leading to the usual Friedmann-Lemaitre cos-
mological model in which the baryon density parameter
satisfies 0.03 < £; < 0.1 (Yang e al. 1984), and galaxies form
from primordial adiabatic density fluctuations. The search for
temperature anisotropy in the cosmic background radiation
induced by density fluctuations on the last scattering surface
has proved to be one of the most important tests of a
baryon-dominated universe. Suppression of small-scale struc-
ture by radiative damping guarantees that the first nonlinear
structures must have developed recently, Consequently reioni-
zation cannot plausibly occur early enough to modify the last
scattering surface. Fine-scale anisotropy limits on angular
scales in excess of several arc minutes have unambiguocusly
ruled out baryon-dominated universes for any power-law ini-
tial adiabatic fluctuation power spectrum, including the plau-
sible and natural hypothesis of scale-invariant fluctuations
(Wilson and Silk 1981; Wilson 1983).

Hence attention has focused on a cosmological model
dominated by dark matter in the form of a weakly interacting
nonbaryonic species (Bond and Szalay 1983). Two candidate
particle species have emerged, a neutrino of mass' ~ 100 £
h%V which first becomes nonrelativistic at kT < m,c? when
the horizon scale contains M, = 10'* (m,/100 eV)™? M,,
and cold relics, such as photinos or axions, which are nonrela-
tivistic (and thereby suppress any free-streaming) at epochs
when the horizon scale contains masses of interest for galaxy
formation. Free-streaming erases all substructure for the neu-

!We adopt the vsual notation h = H,/100 km s~* Mpc™.,
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Accelerator Laboratory near Chicago, for
instance, physicists can recreate condi-
tions prevailing one trillionth of a second
after the creation. The higher the energies
achieved in an accelerator, the earlier the
universe it simulates. “Accelerators have
become time machines,” i
rector Leon Lederman. The other boon has
been supercomputers. Cosmologists use
these silicon behemoths to model the uni-
itsarray of galaxiesand
axies—in hopes of under-
standing how it evolved

Modern cosmology is a child of this cen-
tury. It wasonly in the 1920s that scientists
ized that our Milky Way is not the only
xy. The leading theory of cosmology,
bang model, has been accepted w
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since 1965. This the

an infinitely dense

nfir y hot point called a sin
gularity. Then, 10 billion to
20 billion years ago, the singu
larity exploded. This was not an
|-va<').-mr: into space, as popu-
larly thought, but a smooth.
slowexplosion efspaceitself. Its
effects are still unfolding today
Most dramatically, the uni-
verse is expanding, as one
would expect if it exploded: gal-
axies, bundles of 100 billion
stars, fly apart from each oth-
er, and new space is created
between them. A second linger-
ing effect is the cool radiation
that bathes the cosmos. (The
current reading is 3 degrees
Kelvin or minus 270 degrees
Celsius.) From these tempera-
tures, physicists extrapolate
and conclude that, once, the
universe was asearing fireball
Sequined gown: Yet the big-
bang theory cannot account
for much of what appears in
the firmament. Most critically,
it does not address how the
universe came to be so uniform
in all directions, with particles
of radiation distributed across
the heavenly vault as regular-
ly as sequins on a gown. Nor
does it explain the size and
clustering of galaxies. “We
all had to say that those were
Jjust the God-given conditions,”
says Berkeley's Marc Davis
Cosmologists are no longer content to
invoke the deity. Instead, they are deter-
mined to understa how the world came
to be, and to explain it with such elegant
‘ssmphcuyrh_\t‘ as Lederman is fond of say-
ing, their equation for the universe can be
stenciled onto T shirts. The first step to-
ward a new cosmology came in the early
1980s, when Alan Guth at the Massachu-
setts Institute of Technology proposed his
inflation” scenario. The theory now has
several versions, but each shares one
theme: before 10-5* second after the big
bang, all the forces of nature were rolled up
into asingle superforce, as particle physics
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Turner with particle-cxperiment result

The rival candidate for the mystery par
ticlen is “cold dark matter,” so called be
cause it moves more slowly than neutrinos
It includes purticles with names like axions
ind photinos that, unlike real-life neutri
nos, are purely figments of theorists’ cere
brations. "It's absurd, how uncertain it all
is," admits Berkeley's Davis, Still, he is
doggedly using a Cray to model about
250,000 clouds of cold dark matter parti
ch 20-hour run, Davis
tehes as the | gravity first at
tract ugh ordinary matter to form gal
axies, In his simulation, this takes place
about 10 billion years ago, The computer
galaxies then bunch into clusters about
5 billion years later

For all the brilliance of logic and math
that goes into such ideas, how can you
prove, or disprove, theor bout events no
one witnessed and that cannot be repeated?
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ern sky. To generate enough g
muke galaxies fly through space at
miles nsecond requires something millions
of light-yenrs across, something bigger
than any dark matter can create, More
over, hot dark matter "has problems gener
ating galaxies soon enough,” says Day
Schramm of the University of Chi
“(Cold dark matter] has trouble getting
them into superclusters.”

Cosmic strings: Undaunted, physicists
plucking still more ideas from their t
retical quivers. The latest member of what
Hogan calls “the bulging bestiary of imag
ined fauna [in] the cosmos’ is cosmic
strings. They supposedly formed some
time in the first second, when the universe
underwent a “phase transition." Freezing
mple of a phase transition. Just
as the transition from water to ice pro
duces defects, such as eracks, so the cool
ing universe may have been riddled with
defects, explains Andreas Albrecht of Fer.
milab. Cosmic strings are these defects
They are so dense that an inch of string
would be as heavy as the Swiss Alps, and
10 quadrillion times thinner than an
atomic nucleus. Infinitely long lines, cos-
mic strings would continually break into
loops, filling the cosmos like wiggles in a
Joan Miré canvas. Unfortunately, there is
as yet no evidence that strings exist
hat has only whetted cosmologists’ en
thusiasm for them. Strings appeal because
they might act asseeds of galaxies. Perh Aps
asmallloop of string attracts, with its grav-
ity, enough matter to form a galaxy; a big-
ger loop might attract enough to form a
galactic cluster. Or, strings might blast
matter into galaxies. If strings emit radia
tion, suggest Jeremiah Ostriker and col-
leagues at Princeton, the radiation would
build up immense pressure and start blow-
ing abubble, The bubble would expand and
push surrounding matter into shells,
where galaxies would form

Cosmic strings seem to do a good Jjob of
explaining the pattern of galaxies as well
as the voids between them, claims Al
brecht. And last month physicists at Los
Alamos National Laboratory suggested
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COBRAS/SAMBA

COBRAS/SAMBA
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March 1996, Unesco (Paris)
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Dec 2000, Oxford...

“PARIS” CMBNET NODE
* Paris-Orsay-Saclay:

*J AP (Bouchet, Colombi, Doré, Guiderdoni, Vibert
+ Fosalba soon + Lensi.ng & U’ teams )

JAS (Aghanim, Bernard, Lagache, Puget...)
'LAL (Ansari, Bourachot, Couchot, Versillé...)
*CdF (Amblard, Delabrouille, Giraud-Héraud, Hamilton, Kaplan)

CEA/DAPNIA (SAp+SPP) (Teyssier + Aubourg, Hivon, Magneville)
* Grenoble:

*CRTBT+LAOG+ISN (Benoitt+Désert+Filliatre, Santos...)

* Toulouse:
*LAT+CESR (Bartlett, Blanchard... + Giard, Pointecouteau)

All involved to various deg. in ARCHEOPS & PLANCK
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Planck 2015 temperature maps
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... leads to many

Peeling off foreground
scientific progresses...

emissions... (inc. CIB)
Francois R. Bouchet - Dark Matters/Joe75@IAP, ¥
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Well described
statistically by an
homogeneous and
isotropic Gaussian
field

—300 1K 300

- e FES SN LR T ENE Wi = . swEm - . 2 —
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SPT@150GHz vs planck@143GHz
Hou+ arXiv:1704.00884v1

AT

RS2l Planck

5%’_550 ,"

_high-passed

v - ‘B e
P £ %%

SPT )
| _low-passed JiJ

' 4

Little residual in
SPT-low minus
Planck-high,
but a variable
source

Dec

349° 352° 355°
o R
"Cosmic Microwave Background,‘%hen and now"

ACT@150GHz vs planck@143GHz
Louis+ arXiv:1610.02360v1
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A magnificent consistency in CMB data

~100
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Planck 2015 Polarisation maps
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What we already knew

About 50
locations?

Francois R. Bouchet - Dark Matters/Joe75@IAP, 12/12/2017 "Cosmic Microwave Background, then and now" 18



The gravitational effects of intervening matter bend the path of CMB light on its way from the
early universe to the Planck telescope. This “gravitational lensing” distorts our image of the CMB
(smoothing on the power spectrum, and correlations between scales)

T0) =T

"Cosmic Microwave Background, then and now" 1 9



The (grey) masked area is where foregrounds are too strong to allow an accurate reconstruction
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TT, EE, BB, @® — 2017 status

Angular scale
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» LCDM fits all CMB data in T, E, B, ¢.

— No need for an extension. A great source of constraints/papers...

— Same parameters, determined at the per cent level, fit other
data (BAO, but also BBN, SN1a...).

— Some tensions (anomalies, SZ, HO, WL), whose meaning remains
unclear as of now.
» T anisotropies information essentially exhausted (but
much still to learn on foregrounds, e.g. from SZ).

» A new field, CMB lensing, has emerged (observationally).

» Much untapped and unique information remains in the
CMB polarisation anisotropies (millions of modes).

— Ground observations will now be the dominating source of new
information in the next decade. See next talks. But intrinsic
limitations, i.e., we need space too for large scales, nu coverage,
and for spectral distortions.

- E__ 3 - - L - - a -
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What is the value of n_?

Initial Conditions: quasi-scale invariant

Gij = a*(7) [1 = 20] 7ij e 3(| [} ox k!

Angular scale
og” 18" 1° 0.2"

0.1° 0.07°

| ng=1+0.6

1992 (COBE)
1 ng = 1.031+0.09 2001 (MaxiBoom)
1 ng = 0.963 =0.014 2009 (WMAP5)
| n. = 0.9603 + 0.0073 2013 (Planck+)
(n, = 0.965 4+ 0.006 2015 Planck

alone
Q

2 10 50 500 1000 1500 2000

200 A hundred-fold improvement
Multipole moment, ¢

in 20 years




Power spectrum reconstruction

esa' S T T T T T i I T EEE Y =HEE W= EFE = =8 f¥FESE =T = E AT = s =
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9 e-folds k/MpC_l

Bayesian
reconstruction
with varying
number of
nodes (<9)
reconstruction
s weighted by
their
respective
evidence.

No strong
evidence for
feature or
anomaly.

(actually used 3
different methods,
all with

similar results)

- 4aE- 4@ = - v 4SS ENFE Wi ER T E ¥4 & S 2l sPERSFL B i F e W = =—4A 1 WL S

"Cosmic Microwave Background, then and now" Francgois R. Bouchet - Dark Matters/Joe75@IAP, 12/12/2017 25



(

(Unsuccessful) Search for features

step

Feature in the potential:
{ 2 -
¢ f\ V() = 2 g2 [1 + ctanh (M)]
o — Non vacuum initial conditions/instanton effects
2 in axion monodromy
& V() = wo+ Atoos (%)
= k
PEF() = PR [1-+ g cos (wrogn (1) + 1)
o.ooo/ o001 001 01 Linear oscillations as from Boundary EFT
. k Tilin k
k [Mpc] PR (k) = P (k) [1 + Alin (k—) cos (Wlink— + saun)]
Just enough e-folds, i.e. inflation preceded by a
kinetic stage
Log oscillation model Step model (Nxtf;-'::?:fneter)

0.8

06

04 +

02 |

ACJC,

Cutoff model

10 100 1000
£
Linear oscillation model

(3 extra parameters)
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relative frequency
&
relative frequency

20

12 16
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log oscillatioms

(3 extra parameters)

0.15

relative frequency
relative frequency

r oscillations

(4 extra parameters)
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Tensor-to-scalar ratio (rp.002)

0.05 0.10 0.15 0.20

0.00

Planck 2015: n_vs r

=

V.=(1.9 x 106 GeV)* (r/0.12)

Primordial tilt (ng)

Planck TT+lowP
Planck TT+lowP+BKP
Planck TT+lowP+BKP+BAO
Natural inflation

Hilltop quartic model

« attractors

Power-law inflation

Low scale SB SUSY

R? inflation

V x ¢?

V ox ¢?

Voo ¢Y/3

V x ¢

V x ¢2/3

N,=50

N, =60




fffjj Planck 353GHz reveals the Galactic magnetic field

(whose effect can account for at least about ’z of the initial BICEP claim) . '_




Spatial curvature constraint
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Planck 2015 - Bispectrum constraints @ (L(mﬁj
HFF1 reaver 220

eSa- B e e S R WY B N s G IS R Il ST s = E T W &= I Sy =By T

L (KSW)

Shape and method Independent  ISW-lensing subtracted

SMICA (T) | PIarick 2013

Loeal s :emsms0 95+ 5.6 1.8+ 5.6

Equilateral ..... —-10 +69 -9.2+ 69 ISW-lensing subtracted

Orthogonal . . ... —43 £33 -20 +33 KSW Binned Modal
SMICA (T+E)

Local ......... 6.5+ 5.1 flocal \ = 0.8 £5.0 27+58) 22+59  1.6+6.0

Equilateral . . ... —-8.9 + 44 feaull \ = -4+43 —42+75| -25+73  -20+77

Orthogonal . . ... 35 +22 fortho y, =-26 21 —25+39) -17+41 -14+42

Constraint volume in LEO space
shrunk by factor of 3. wrt Planck2013

O =+ fu(e? — (7)) [ eS| < 108 (Maxima 2001), A hundred-fold
non-Gaussian 4ial| . 102 (WMAP7) Improvement in 14
: 10 (Planck15) years
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&%) We tested & constrained a lot more...
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Tensor-to-scalar ratio (r)
1072

1073

log(10'%P%)

CORE examples of CMB potential

do~

Primordial tilt (ny)

20
104

Planck
CORE

log(10'"Pr)

=

1078

[L(t+1)]%C,*®/2n
1077

10°°

: CORE

"~ Planck 2015 1 $3-wide
Ll PRI sl sl el et il
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! l l

Reconstruction noise of the lensing detection power spectrum from Planck 2015 (left) and
forecasts. The detection power spectrum is plotted based on the linear matter power
spectrum (black solid) and with non-linear corrections (black dashed). [MV=minimum

L
109

TR
k [Mpc™']

k [Mpe ™

Variance]. =2 M,, N
Model Planck15+BAO  CORE  CORFE+BAO
ACDM 33 2.3 x 10° 2.3 x 10%
ACDM + 5" m, 11 8.9 x 10° 2.0 x 10*
ACDM + w 24 5.4 x 10° 2.2 x 10*
ACDM + 5" m,, + Neg 15 4.7 x 10* 1.0 x 10°
ACDM + wo + wq 49 4.7 x 10° 1.3 x 10°

ACDM + Yp + > mu + Negr
ACDM + r + dng/dInk + 3 my, + Negg

ACDM + w + Yp + > my + Negr
ACDM +w+7r+ > my + Nes

Table 2: Improvement with respect to Planck15 of the global figure of merit (see text) in the different cosmological

scenarios specified in the first column for various data combinations involving CORE and future BAO measurements.
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ith much more to come!

Starting with Planck 2018 “legacy” release!



