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World-wide network of gravitational wave detectors

[Rainer Weiss, Barry Barish & Kip Thorne, Nobel prize 2017]

LIGO Hanford 4 & 2 km

LIGO Livingston 4 km

GEO Hannover 600 m

Kagra Japan
3 km

Virgo Cascina 3 km

LIGO South
Indigo
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Binary black-hole event GW170814 [LIGO/Virgo collaboration 2017]
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Binary black-hole events [LIGO/Virgo collaboration 2016, 2017]

For BH binaries the detectors are mostly sensitive to the merger phase and a
few cycles are observed before coalescence

For NS binaries the detectors will be sensitive to the inspiral phase prior the
merger and thousands of cycles are observable
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Binary neutron star event GW170817 [LIGO/Virgo 2017]

The signal is observed during ∼ 100 s and ∼ 3000 cycles and is the loudest
gravitational-wave signal yet observed with a combined SNR of 32.4

The chirp mass is accurately measured to M = µ3/5M2/5 = 1.98M�

The advent of multi-messenger Astronomy with the concomitant discovery of
a short gamma ray burst and an optical kilonova
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Post-merger waveform of neutron star binaries
[Shibata et al., Rezzolla et al. 1990-2010s]
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100 years of gravitational radiation [Einstein 1916]

⇐= small perturbation of
Minkowski’s metric
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GW solutions in metric theories of gravity

1 Small perturbation of the metric around flat space-time

gµν = ηµν + hµν with |hµν | � 1

2 Restrict attention to theories admitting GW solutions propagating at the
speed of light: cg = 1. Far from the sources the waves are planar, hence

�hµν = 0 ⇐⇒ hµν = hµν(t− z)

3 From the linearized Bianchi’s identity obtain

�Rµνρσ = 0 ⇐⇒ Rµνρσ = Rµνρσ(t− z)

showing that GWs have an invariant, coordinate-independent meaning

4 The six components R0i0j (where i, j = x, y, z) represent six independent
components (polarization modes)

5 In GR Rµν = 0 hence there are only two independent polarization modes
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GW polarization modes in metric theories of gravity

General Relativity

Scalar-Tensor theory

Massive Gravity theory
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Bounding the mass of the graviton [Will 1998]

1 Dispersion relation for a massive graviton

v2g
c2

= 1−
m2

gc
4

E2
g

2 The frequency of GW sweeps from low to
high frequency during the inspiral and the
speed of GW varies from lower to higher
(close to c) speed at the end

3 The constraint is [LIGO/Virgo collaboration 2016]

mg . 10−22 eV
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Dark energy after GW170817 [Bettoni et al. 2017; Creminelli & Vernizzi 2017]

1 The observed time delay between GW170817 and the GRB constrains

|cg − cem| . 10−15c

2 Consider models of dark energy and modified gravity characterized by a single
scalar degree of freedom (Horndeski theory)

L = G2(φ,X) +G3(φ,X)�φ+G4(φ,X)R

− 2G4,X(φ,X)
(
�φ2 − φµνφµν

)
+G5(φ,X)Eµνφµν

+
1

3
G5,X(φ,X)

(
�φ3 − 3�φφµνφµν + 2φµνφµρφ

ρ
ν

)
3 Imposing the speed of GWs to be one (i.e. cg ≡ cT = 1) drastically reduces

the space of allowed theories

LcT=1 = G2(φ,X) +G3(φ,X)�φ+B4(φ)R

where the third term simply recovers the standard conformal coupling
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Quadrupole moment formalism [Einstein 1918; Landau & Lifchitz 1947]

1 Einstein quadrupole formula(
dE

dt

)GW

=
G

5c5

{
d3Qij

dt3
d3Qij

dt3
+O

(v
c

)2}
2 Amplitude quadrupole formula

hTT
ij =

2G

c4D

{
d2Qij

dt2

(
t− D

c

)
+O

(v
c

)}TT

+O
(

1

D2

)
3 Radiation reaction formula [Chandrasekhar & Esposito 1970; Burke & Thorne 1970]

F reac
i = − 2G

5c5
ρ xj

d5Qij
dt5

+O
(v
c

)7
which is a 2.5PN ∼ (v/c)5 effect in the source’s equations of motion
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Application to compact binaries [Peters & Mathews 1963; Peters 1964]

m

m

1

2

1

2

v

v

 a semi-major axis of relative orbit
e eccentricity of relative orbit
ω = 2π

P orbital frequency

M = m1 +m2

µ = m1m2

M

ν =
µ

M
0 < ν 6

1

4

Averaged energy and angular momentum balance equations

〈dE
dt
〉 = −〈FGW〉 〈dJi

dt
〉 = −〈GGW

i 〉

are applied to a Keplerian orbit (using Kepler’s law GM = ω2a3)

〈dP
dt
〉 = −192π

5c5
ν

(
2πGM

P

)5/3 1 + 73
24e

2 + 37
96e

4

(1− e2)7/2

〈de
dt
〉 = −608π

15c5
ν
e

P

(
2πGM

P

)5/3 1 + 121
304e

2

(1− e2)5/2
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Orbital phase evolution of compact binaries
[Dyson 1969; Esposito & Harrison 1975; Wagoner 1975]

1 Compact binaries are circularized when they enter the detector’s bandwidth
2 The amplitude and phase evolution follow an adiabatic chirp in time

a(t) =

(
256

5

G3M3ν

c5
(tc − t)

)1/4

φ(t) = φc −
1

32ν

(
256

5

c3ν

GM
(tc − t)

)5/8

3 The amplitude and orbital frequency diverge at the instant of coalescence tc
since the approximation breaks down
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Why inspiralling binaries require high PN modelling
[Caltech “3mn paper” 1992; Blanchet & Schäfer 1993]

VOLUME 70, NUMBER 20 P H YSICAL REVI EW LETTERS 17 MAY 1993

The Last Three Minutes: Issues in Cravitational-Wave Measurements
of Coalescing Compact Binaries

Curt Cutler, ~il Theocharis A. Apostolatos, ~ 1 Lars Bildsten, ~ 1 Lee Samuel Finn, & 1 Eanna E. Flanagan, ~il

Daniel Kennefick, ~ ~ Dragoljub M. Markovic, ~ ~ Amos Ori, ~ & Eric Poisson, ~~~ Gerald Jay Sussman, ~~~ ~~~

and Kip S. Thorne~ ~

~ i Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125
Department of Physics and Astronomy, Northnrestern University, Evanston, Illinois 6'0208

(Received 24 August 1992)
Gravitational-wave interferometers are expected to monitor the last three minutes of inspiral

and final coalescence of neutron star and black hole binaries at distances approaching cosmological,
where the event rate may be many per year. Because the binary's accumulated orbital phase can
be measured to a fractional accuracy « 10 and relativistic effects are large, the wave forms will
be far more complex and carry more information than has been expected. Improved wave form
modeling is needed as a foundation for extracting the waves' information, but is not necessary for
wave detection.

PACS numbers: 04.30.+x, 04.80.+z, 97.60.Jd, 97.60.Lf

A network of gravitational-wave interferometers (the
American LIGO [1], the French/Italian VIRGO [2], and
possibly others) is expected to be operating by the end
of the 1990s. The most promising waves for this network
are from the inspiral and coalescence of neutron star (NS)
and black hole (BH) binaries [3, 4], with an estimated
event rate of (3/year) [distance/(200 Mpc)] [5]. This
Letter reports initial results of a new research eKort that
is changing our understanding of these waves; further
details will be given in the authors' papers cited in the
references.

A binary's inspiral and coalescence will produce two
gravitational wave forms, one for each polarization. By
cross correlating the outputs of three or more interferom-
eters, both wave forms can be monitored and the source's
direction can be determined to within 1 degree [4, 6].

We shall divide each wave form into two parts: the
inspiral toave forvn, emitted before tidal distortions be-
corne noticeable (+ 10 cycles before complete disruption
or merger [7, 8]), and the coalescence toave form, emitted
during distortion, disruption, and/or merger.

As the binary, driven by gravitational radiation reac-
tion, spirals together, its inspiral tvave form sweeps up-
ward in frequency f (it "chirps"). The interferometers
will observe the last several thousand cycles of inspiral
(from f 10 Hz to 1000 Hz), followed by coalescence.

Theoretical calculations of the wave forms are gener-
ally made using the post-Newtonian (PN) approximation
to general relativity. Previous calculations have focused
on the Newtonian-order wave forms [1,3, 4, 9] and on PN
modulations of their amplitude and frequency [10].

%'e have recently realized that the PN modulations
are far less important than PN contributions to the secu-
lar growth of the waves' phase C = 2~ f fdt, which arise
largely from PN corrections to radiation reaction [ll, 12].
The binary's parameters are determined by integrating
the observed (noisy) signal against theoretical templates,
and if the signal and template lose phase with each other
by as little as one half cycle over the thousands observed

as the signal sweeps through the interferometers' band,
their overlap integral will be strongly reduced. This sen-
sitivity to phase does not mean that accurate templates
are needed in searches for the waves (see below). How-
ever, once the waves have been found, and if accurate
templates are in hand, then from the orbital phasing one
can infer each of the system's parameters A, to an accu-
racy of order the change LA, which alters by unity the
number of cycles JV, ~, spent in the interferometers' band.

We shall assume (as almost always is the case) that
the binary's orbit has been circularized by radiation re-
action [10]. Then the only parameters A, that can sig-
nificantly inBuence the inspiral template's phasing are
the bodies' masses, vectorial spin angular momenta, and
spin-induced quadrupole moments (which we shall ignore
because, even for huge spins, they produce orbital phase
shifts no larger than ~ 1 [8]). More specifically, the num-
ber of cycles spent in a logarithmic interval of frequency,
dA, ~,/d ln f = (1/2vr) (dC /d ln f), is

dAtcyc 5 1 ( 743 11
din f 96~ p,M I (7rf) I (336 4 M

—f4 + s.o.] ' '+ [s.s.]*'+o(*")).
Here M is the binary's total mass, p, its reduced mass,
and x—:(vrM f)2Is M/D the PN expansion parameter
(with D the bodies' separation and c = G = 1). The PN
correction [O(2:) term] is from [13]. In the Pi sN correc-
tion [O(zi 5) term], the 4vr is created by the waves' in-
teraction with the binary's monopolar gravitational Geld
as they propagate from the near zone to the radiation
zone [14], and the "S.O." denotes contributions due to
spin-orbit coupling [15]. In the P N correction the "S.S."
includes spin-spin coupling effects [15] plus an expression
quadratic in lJ,/M. (For bodies with sizes comparable to
their separations, the spin-orbit and spin-spin terms are
of PN order; but the compactness of a BH or NS boosts
them up to Pi sN and P N, respectively; cf. [15].)

Since the leading-order, Newtonian contribution to
2984 1993 The American Physical Society
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The gravitational chirp of compact binaries

merger phase

inspiralling phase
post-Newtonian theory

numerical relativity

ringdown phase
perturbation theory
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The GW templates of compact binaries

1 In principle, the templates are obtained by matching together:

A high-order 3.5PN waveform for the inspiral [Blanchet et al. 1998, 2002, 2004]

A highly accurate numerical waveform for the merger and ringdown
[Pretorius 2005; Baker et al. 2006; Campanelli et al. 2006]

2 In practice, for black hole binaries (such as GW150914), effective methods
that interpolate between the PN and NR play a key role in the data analysis

Hybrid inspiral-merger-ringdown (IMR) waveforms [Ajith et al. 2011] are
constructed by matching the PN and NR waveforms in a time interval through
an intermediate phenomenological phase
Effective-one-body (EOB) waveforms [Buonanno & Damour 1998] are based on
resummation techniques extending the domain of validity of the PN
approximation beyond the inspiral phase

3 In the case of neutron star binaries (such as GW170817), the masses are
smaller and the templates are entirely based on the 3.5PN waveform
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Einstein field equations as a “Problème bien posé”
Start with the GR action for the metric gµν with the matter term

SGR =
c3

16πG

∫
d4x
√
−g R︸ ︷︷ ︸

Einstein-Hilbert action

+Sm[gµν ,Ψ]︸ ︷︷ ︸
matter fields

Add the harmonic coordinates gauge-fixing term (where gαβ =
√
−ggαβ)

SGR =
c3

16πG

∫
d4x

(√
−g R−1

2
gαβ∂µg

αµ∂νg
βν︸ ︷︷ ︸

gauge-fixing term

)
+ Sm

Obtain a well-posed system of equations [Choquet-Bruhat 1952]

gµν∂2µνg
αβ =

16πG

c4
|g|Tαβ +

non-linear source term︷ ︸︸ ︷
Σαβ [g, ∂g]

∂µg
αµ = 0︸ ︷︷ ︸

harmonic-gauge condition
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The MPM-PN formalism [Blanchet-Damour-Iyer 1980s; Blanchet 1995, 1998]

A multipolar post-Minkowskian (MPM) expansion in the exterior zone is matched
to a general post-Newtonian (PN) expansion in the near zone

near zone

PN source

wave zone

exterior zone
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The MPM-PN formalism [Blanchet-Damour-Iyer 1980s; Blanchet 1995, 1998]

A multipolar post-Minkowskian (MPM) expansion in the exterior zone is matched
to a general post-Newtonian (PN) expansion in the near zone

near zone

PN source

wave zone

matching zone

exterior zone

M(hαβ) =M(h̄αβ)︸ ︷︷ ︸
matching equation
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The MPM-PN formalism [Blanchet-Damour-Iyer 1980s; Blanchet 1995, 1998]

1 Radiative multipole moments observed at infinity from the source (J +)

UL(T −R/c) , VL(T −R/c)

2 Source multipole moments describe a specific matter system

IL(t) , JL(t)

The relations between the radiative moments and the source moments are
obtained by the MPM algorithm

The expressions of the source moments in terms of the source parameters
follow from the matching to the PN source

The radiation reaction effects in the PN solution are also obtained
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The source multipole moments [Blanchet 1995, 1998]

IL(t) = PF

∫
d3x

∫ 1

−1
dz

{
δ`x̂LΣ− 4(2`+ 1)

c2(`+ 1)(2`+ 3)
δ`+1x̂iLΣ

(1)
i

+
2(2`+ 1)

c4(`+ 1)(`+ 2)(2`+ 5)
δ`+2x̂ijLΣ

(2)
ij

}∣∣∣∣
(x,t+zr/c)

JL(t) = PF

∫
d3x

∫ 1

−1
dz εab〈i`

{
δ`x̂L−1〉aΣb

− 2`+ 1

c2(`+ 2)(2`+ 3)
δ`+1x̂L−1〉acΣ

(1)
bc

}∣∣∣∣
(x,t+zr/c)

Σ, Σi and Σij are the matter currents defined from the PN expansion of the
components of the source’s stress-energy pseudo tensor

The FP procedure means the Hadamard “Partie Finie” and plays the role of
an IR regularization in the multipole moments
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The radiative quadrupole moment [Marchand, Blanchet & Faye 2016]

Uij(t) = I
(2)
ij (t) +

GM

c3

∫ +∞

0

dτI
(4)
ij (t− τ)

[
2 ln

(
τ

2τ0

)
+

11

6

]
︸ ︷︷ ︸

1.5PN tail integral

+
G

c5

{
−2

7

∫ +∞

0

dτI
(3)
a<iI

(3)
j>a(t− τ)︸ ︷︷ ︸

2.5PN memory integral

+instantaneous terms

}

+
G2M2

c6

∫ +∞

0

dτI
(5)
ij (t− τ)

[
2 ln2

(
τ

2τ0

)
+

57

35
ln

(
τ

2τ0

)
+

124627

22050

]
︸ ︷︷ ︸

3PN tail-of-tail integral

+
G3M3

c9

∫ +∞

0

dτI
(6)
ij (t− τ)

[
4

3
ln3

(
τ

2τ0

)
+ · · ·+ 129268

33075
+

428

315
π2

]
︸ ︷︷ ︸

4.5PN tail-of-tail-of-tail integral

+O
(

1

c10

)
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The gravitational wave tail effect
[Blanchet & Damour 1988; Blanchet 1993, 1997; Foffa & Sturani 2011; Galley et al. 2016]

ijQ M klQ ijQ M

4PN

1.5PN

matter source

field point

In the near zone (4PN effect)

Stail =
G2M

5c8

∫∫
dtdt′

|t− t′|
I
(3)
ij (t) I

(3)
ij (t′)

In the far zone (1.5PN effect)

htailij =
4G

c4r

GM

c3

∫ t

−∞
dt′I

(4)
ij (t′) ln

(
t− t′

τ0

)
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Phasing formula of inspiralling compact binaries
[BDIWW 1995; B 1996, 1998; BIJ 2002, BFIJ 2002; BDEI 2006]

φ(ω) = φ0 −
1

32ν

(
GMω

c3

)−5/3{
1

+

1PN︷ ︸︸ ︷(
3715

1008
+

55

12
ν

)(
GMω

c3

)2/3

−

1.5PN (tail)︷ ︸︸ ︷
10π

(
GMω

c3

)

+

2PN︷ ︸︸ ︷(
15293365

1016064
+

27145

1008
ν +

3085

144
ν2
)(

GMω

c3

)4/3

+ · · ·
}

The phase evolution is currently known up to 3.5PN order
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Measurement of PN parameters [LIGO/Virgo 2016]

PN order

10−1

100

101
| δ
ϕ̂|

GW150914
GW151226
GW151226+GW150914

0.5PN 1PN 1.5PN 2PN 2.5PN 3PN 3.5PN0PN
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Measuring GW tails [Blanchet & Sathyaprakash 1994, 1995]

PN order

10−1

100

101
| δ
ϕ̂|

GW150914
GW151226
GW151226+GW150914

0.5PN 1PN 1.5PN 2PN 2.5PN 3PN 3.5PN0PN

test of the
tail effect
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The 1PN equations of motion
[Lorentz & Droste 1917; Einstein, Infeld & Hoffmann 1938]

d2rA
dt2

= −
∑
B 6=A

GmB

r2AB
nAB

[
1− 4

∑
C 6=A

GmC

c2rAC
−
∑
D 6=B

GmD

c2rBD

(
1− rAB · rBD

r2BD

)

+
1

c2

(
v2
A + 2v2

B − 4vA · vB −
3

2
(vB · nAB)2

)]
+
∑
B 6=A

GmB

c2r2AB
vAB [nAB · (3vB − 4vA)]− 7

2

∑
B 6=A

∑
D 6=B

G2mBmD

c2rABr3BD
nBD

Luc Blanchet (GRεCO) GW & Theory Dark Matters 26 / 31



4PN: state-of-the-art on equations of motion

dvi1
dt

=− Gm2

r212
ni12

+

1PN Lorentz-Droste-Einstein-Infeld-Hoffmann term︷ ︸︸ ︷
1

c2

{[
5G2m1m2

r312
+

4G2m2
2

r312
+ · · ·

]
ni12 + · · ·

}
+

1

c4
[· · · ]︸ ︷︷ ︸

2PN

+
1

c5
[· · · ]︸ ︷︷ ︸

2.5PN
radiation reaction

+
1

c6
[· · · ]︸ ︷︷ ︸

3PN

+
1

c7
[· · · ]︸ ︷︷ ︸

3.5PN
radiation reaction

+
1

c8
[· · · ]︸ ︷︷ ︸

4PN
conservative & radiation tail

+O
(

1

c9

)

3PN


[Jaranowski & Schäfer 1999; Damour, Jaranowski & Schäfer 2001ab]

[Blanchet-Faye-de Andrade 2000, 2001; Blanchet & Iyer 2002]

[Itoh & Futamase 2003; Itoh 2004]

[Foffa & Sturani 2011]

ADM Hamiltonian

Harmonic EOM

Surface integral method

Effective field theory

4PN

 [Jaranowski & Schäfer 2013; Damour, Jaranowski & Schäfer 2014]

[Bernard, Blanchet, Bohé, Faye, Marchand & Marsat 2015, 2016, 2017abc]

[Foffa & Sturani 2012, 2013] (partial results)

ADM Hamiltonian

Fokker Lagrangian

Effective field theory
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Fokker action of N particles [Fokker 1929]

1 Gauge-fixed Einstein-Hilbert action for N point particles

Sg.f. =
c3

16πG

∫
d4x
√
−g
[
R −1

2
gµνΓµΓν︸ ︷︷ ︸

Gauge-fixing term

]

−
∑
A

mAc
2

∫
dt
√
−(gµν)A v

µ
Av

ν
A/c

2︸ ︷︷ ︸
N point particles

2 Fokker action is obtained by inserting an explicit PN solution of the Einstein
field equations

gµν(x, t) −→ gµν(x;yB(t),vB(t), · · ·)
3 The PN equations of motion of the N particles (self-gravitating system) are

δSF

δyA
≡ ∂LF

∂yA
− d

dt

(
∂LF

∂vA

)
+ · · · = 0

4 The Fokker action is equivalent to the effective action used by the EFT
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Problem of the IR divergences

1 The tail effect implies the appearance of IR divergences in the Fokker action
at the 4PN order

2 Our initial calculation of the Fokker action was based on the Hadamard
regularization to treat the IR divergences (FP procedure when B → 0)

3 However computing the conserved energy and periastron advance for circular
orbits we found it does not agree with GSF calculations

4 The problem was due to the HR and conjectured that a different IR
regularization would give (modulo shifts)

L = LHR +
G4mm2

1m
2
2

c8r412

(
δ1(n12v12)2 + δ2v

2
12

)
︸ ︷︷ ︸

two ambiguity parameters δ1 and δ2

5 Matching with GSF results for the energy and periastron advance uniquely
fixes the two ambiguity parameters and we are in complete agreement with
the results from the Hamiltonian formalism [DJS]
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Dimensional regularization of the IR divergences

The Hadamard regularization of IR divergences reads

IHR
R = FP

B=0

∫
r>R

d3x
( r
r0

)B
F (x)

The corresponding dimensional regularization reads

IDR
R =

∫
r>R

ddx

`d−30

F (d)(x)

The difference between the two regularization is of the type (ε = d− 3)

DI =
∑
q

[
1

(q − 1)ε︸ ︷︷ ︸
IR pole

− ln

(
r0
`0

)]∫
dΩ2+ε ϕ

(ε)
3,q(n) +O (ε)
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Ambiguity-free completion of the 4PN EOM
[Marchand, Bernard, Blanchet & Faye 2017]

1 The tail effect contains a UV pole which cancels the IR pole coming from the
instantaneous part of the action

Stail
F =

2G2M

5c8

∫ +∞

−∞
Q

(3)
ij (t)

∫ +∞

0

dτ

[
ln

(
c
√
q̄ τ

2`0

)
− 1

2ε︸︷︷︸
UV pole

+
41

60

]
Q

(4)
ij (t− τ)

2 For the tail effect we are in complete agreement with the EFT calculation
based on a single Feynman diagram [Galley, Leibovich, Porto & Ross 2011]

3 Adding up all contributions we obtain the conjectured form of the ambiguity
terms with the correct values of the ambiguity parameters δ1 and δ2

4 The lack of a consistent matching in the ADM Hamiltonian formalism [DJS]

forces this formalism to be plagued by one ambiguity parameter
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