The Future of Empirically Established Cosmology

On the occasion of Joe Silk's 75th Birthday IAP December 2017 PJE Peebles

- (1) We all make non-empirical judgements, for better or worse.
- (2) Λ CDM is empirically well established. It certainly is incomplete.
 - (a) But all physics is incomplete. Consider Maxwell's equations \rightarrow QED \rightarrow ??
 - (b) But surely there is a better cosmology for $z \lesssim 10^{10}$ than I guessed at in 1982 and 1984, with an empirically more interesting dark sector.
- (3) Seeking detection of DM, evolution of Λ , and more interesting dark & gravity physics:
 - (a) No compelling DM detection after decades of searches; no problem for Λ CDM.
 - (b) Might completion of MOND or emergent gravity replace Λ CDM? A very long shot.
- (4) Challenges to Λ CDM may point to a better theory, or only misreadings of the evidence. My choices of challenges that seem less likely to be misinterpretations:
 - (a) Scaling laws & stellar halo luminosities challenge the expected growth by merging.
 - (b) Stellar bulges of galaxy are much fainter than models. Can feedback, as by the enigmatic central massive black holes, resolve this long-standing problem?
 - (c) Galaxies edging into the Local Void look similar to those in the Local Plane.
- (5) Dreams of a final cosmology:
 - (a) The empirical case for inflation is promising, but not persuasive.
 - (b) Hazards of the Anthropic Principle: e.g. Λ , a superabundance of homes for us.
 - (c) The nightmare: a final cosmology that is logically complete, fits all observations, but rotten at the core, which we'd never know if the core could not be probed.
- (6) Dreams of empirical surprises to come:
 - (a) Maybe it's successive incomplete approximations all the way down.
 - (b) But final or incomplete, our universe is immense, surely full of empirical surprises.

Landau and Lifshitz, the 1951 translation of the 1948 Russian *Theory of Field*

THE CLASSICAL THEORY OF FIELDS

ъy

L. LANDAU AND E. LIFSHITZ Institute for Physical Problems Academy of Sciences of the U.S.S.R.

Translated from the Russian by MORTON HAMERMESH Argonne National Laboratory

ADDISON-WESLEY PUBLISHING COMPANY, INC. READING, MASSACHUSETTS, U.S.A.

CONTENTS

viii

CHAPTE	R 5. CONSTANT FIELDS	4
5-1	Coulomb's law	4
5-2	Electrostatic energy of charges	5
5-3	The field of a uniformly moving charge	7
5-4	The dipole moment	2
5-6	Multiple moments	4
5-7	System of charges in an external field	6
5-8	Constant magnetic field	7
5–9	Magnetic moments	9
Снарте	r 6. Electromagnetic Waves	4
6-1	D'Alembert's equation	4
6-2	Plane waves	5
6–3	Monochromatic plane waves	8
6–4	The Doppler effect	1
6–5	Polarization	2
6-6	Spectral resolution	3
6-7	Partially polarized light	0
6-0	Characteristic vibrations of the field	9
0-5		
CHAPTE	r 7. The Propagation of Light	6
7-1	Geometrical optics	6
7-2	Intensity	0
7-3	The angular eikonal	Z
7-4	Inarrow bundles of rays	0
7-5	The limits of geometrical ontics	2
7-7	Diffraction	5
7-8	Fresnel diffraction	1
7-9	Fraunhofer diffraction	5
Снарте	R 8. THE FIELD OF MOVING CHARGES	1
8-1	The retarded potentials	1
8-2	The Lienard-Wiechert potentials	4
8-3	Spectral resolution of the retarded potentials	7
8-4	The Lagrangian to terms of second order	0
CHAPTE	R 9. RADIATION OF ELECTROMAGNETIC WAVES	6
0_1	The field of a system of charges at large distances	6
9-2	Dipole radiation	0
9-3	Radiation during collisions	3
9-4	Radiation in the case of Coulomb interaction	7

ONT	711177	TITICI
UIN	TEL	ATS.

ix

	9-0	Quadruple and magnetic dipole radiation								204
	9-6	The field of the radiation at near distances								207
	9-7	Radiation from a rapidly moving charge								210
	9-8	Radiation from a charge moving uniformly in a	circ	ele						213
	9-9	Radiation damping								218
	9–10	Spectral resolution of the radiation in the ultrare	elat	ivi	stic	ca	se			227
	9–11	Scattering by free charges								231
	9-12	Scattering of low-frequency waves								237
	9–13	Scattering of high-frequency waves								239
		10 D								
1	HAPTER	R 10. PARTICLE IN A GRAVITATIONAL FIELD .	•	•						244
	10-1	Gravitational fields in nonrelativistic mechanics								244
	10-2	The gravitational field in relativistic mechanics								246
	10-3	Curvilinear coordinates								249
	10-4	Distances and time intervals								256
	10-5	Covariant differentiation							•	260
	10-6	The relation of the Christoffel symbols to the m	etr	ic	ten	sor			•	265
	10-7	Motion of a particle in a gravitational field		10	· · · · ·	001	•		•	268
	10-8	Limiting transition						•	·	200
	10-9	The equations of electrodynamics in the presence	e o	fa	ors	·	at	ion	al	411
		field		1	810		, cu u.	ion	aı	979
	10-10	The constant gravitational field		•	•	•	•	•	•	974
	10-11	Rotation	•	•	•	•	•	•	•	214
		of references in other search about many		•	•	•	•	•	•	201
E	IAPTER	11. THE GRAVITATIONAL FIELD EQUATIONS								283
	11-1	The curvature tensor								009
	11-2	Properties of the curvature tensor	•	•	•	•	•	•	•	200
	11-3	The action function for the gravitational field	•	•	•	•	•	•	•	280
	11-4	The energy-momentum tensor	•	•	•	•	•	•	•	289
	11-5	The gravitational field equations	•	•	•	•	•	•	•	293
	11-6	Newton's law	•	•	•	•	•	•	•	296
	11-7	The centrally symmetric gravitational fald	•	•	•	•	•	•	•	301
	11_8	Motion in a controlly symmetric gravitational field		•	•	•	•	•	•	304
	11_0	The energy momentum according to the second	ela	•	•	•	•	•	•	312
	11-10	Creatitational menual pseudotensor	•	•	•	•	•	•	•	316
	11-10	Wook gravitational Call	•	•	•	•	•	•	•	323
	11-11	Padiation of maritational fields.	•	•	•	•	•	•	•	326
	11-12	Instruction of gravitational waves	•	•	•	•	•		•	329
	11-13	Isotropic space				•	•	•	•	332
	11-14	Space-time metric in the closed isotropic model	•	•	•		•	•	•	336
	11-15	space-time metric for the open isotropic model				•		•	•	340
	11-16	The propagation of light								344

* Nowhere in our equations do we consider the so-called cosmological constant, since at the present time it has finally become clear that there is no basis whatsoever for such a change in the equations of attraction.

Selected Measurements of CMB Spectrum

ACDM is is convincingly established as a good approximation to "reality" by passing far more empirical tests than guided its formulation.

 Λ CDM is incomplete, as is all the rest of our physics.

AQUARIUS pure DM halos of L~L* galaxies in ΛCDM (Springel et al. 2008). Lengths are physical.

Images by Jie Wang, Durham, in colaboration with Adi Nusser, Technion.

The grey scale shows particles that are at r200 > r > 7 kpc at z = 0.

Overplotted in black are particles at 3 < r < 7 kpc at z = 0.

Overplotted in yellow are particles at r < 3 kpc at z = 0.

z=1.0

z = 0.0

z=3.

RGB star counts converted to stellar halo mass at 10 < c < 40 kpc and c/a = 0.6 give halo/total mass ~ 0.02 to 0.03 in Sculptor. This is much fainter than models in which galaxies grew by merging, placing early generations of stars in stellar halos.

Mariangela Bernardi 2006 early-type galaxies

THE DEPENDENCE ON ENVIRONMENT OF THE COLOR-MAGNITUDE RELATION OF GALAXIES

DAVID W. HOGG,¹ MICHAEL R. BLANTON,¹ JARLE BRINCHMANN,² DANIEL J. EISENSTEIN,³ DAVID J. SCHLEGEL,⁴ JAMES E. GUNN,⁴ TIMOTHY A. MCKAY,⁵ HANS-WALTER RIX,⁶ NETA A. BAHCALL,⁴

J. Brinkmann,⁷ and Avery Meiksin⁸

Received 2003 July 11; accepted 2003 December 2; published 2004 January 16

(bowdlerized)

The local number density contrast is the average within a cylinder of radius $1h^{-1}$ Mpc and half-length $8h^{-1}$ Mpc in redshift space.

The SDSS magnitudes and colors are measured at $\sim 80\%$ of the nominal Petrosian magnitude, that is, well outside the half-light radius.

The Tully–Fisher relation for 25 000 Sloan Digital Sky Survey galaxies as a function of environment

P. Mocz,^{1,2*} A. Green,^{1*} M. Malacari^{1,3*} and K. Glazebrook^{1*}

Late-type SDSS galaxies selected by color. See the familiar insensitivity to ambient conditions.

lowest Log₁₀ (v_{FWHM} / km s⁻¹) highest quartiles in ambient density

ACDM predicts galaxies grew by merging, yet scaling says galaxies evolved pretty much as island universes.*

^{*} I mean evolution, not whatever caused the morphology-density relation.

Figure courtesy of private communication from Guangtun Zhu, based on analyses of SDSS data in

STELLAR POPULATIONS OF ELLIPTICAL GALAXIES IN THE LOCAL UNIVERSE ApJ 2010

GUANGTUN ZHU¹, MICHAEL R. BLANTON¹, AND JOHN MOUSTAKAS²

¹ Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA; gz323@nyu.edu, michael.blanton@nyu.edu

² Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424, USA; jmoustakas@ucsd.edu

John Kormendy HST image

M 101 Robert Gendler Composite image, HST and ground-based galaxy classical bulges are far less luminous than models: might feedback succeed?

