Reflections

1. Intuition is not enough. Need data!

STAR PRODUCTION IN AN EXPANDING UNIVERSE

Я.Б. ЗЕЛЬДОВИЧ 1914-1987

576

NATURE

AUGUST 6, 1966 Vol. 21

INTERPRETING THE COSMIC MICROWAVE BACKGROUND

By Prof. DAVID LAYZER
Harvard College Observatory, Harvard, Massachusetts

The observation by Penzias and Wilson¹ of an isotropic microwave background, later confirmed by Roll and Wilkinson², has received two conflicting interpretations. Dicke, Peebles, Roll and Wilkinson³ postulate a universe of the type considered by Gamow⁴, in which the energy density of radiation exceeds that of matter near the beginning of the expansion, and interpret the observed radiation field as a remnant of the initial 'flash'. According to the second interpretation, the observed radiation was emitted between 10 and 105 years after the beginning of the expansion by ionized hydrogen at a nearly constant temperature in the range 104-106 °K. Miss Kaufman⁶ has shown that this model⁵ is consistent with the observations of Penzias and Wilson and of Roll and Wilkinson as well as with measurement of the radio-noise background between 10 and 400 Mc/s. At millimetre wave-lengths, where no measurements have as yet been made, the constant-temperature model predicts a much lower value

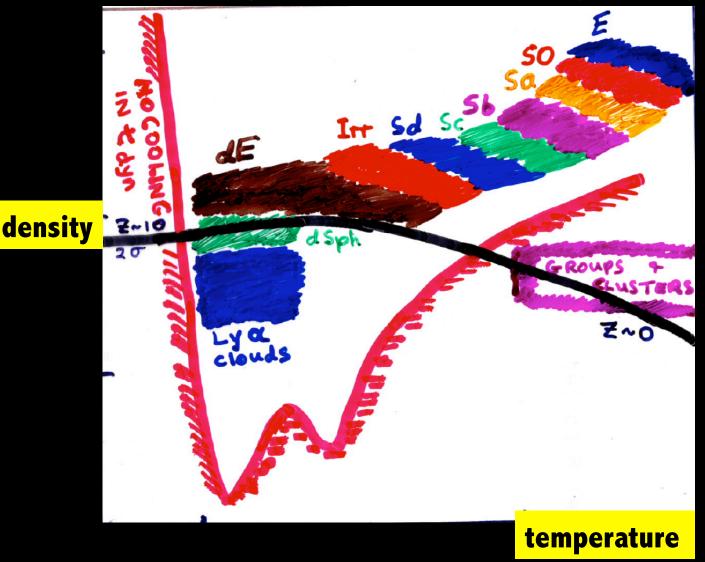
$$\mathbf{v} = S(t) \frac{\mathbf{d}\mathbf{x}}{\mathbf{d}t} \tag{4}$$

where the components of $\bar{\mathbf{x}}$ are 'co-moving' spatial coordinates. Energy exchange between the radiation field and the matter is described by the equation:

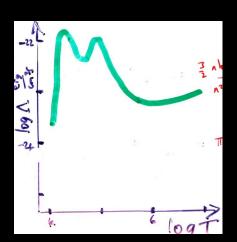
$$\frac{\mathrm{d}}{\mathrm{d}t}(\varepsilon_r S^3) + p_r \frac{\mathrm{d}S^3}{\mathrm{d}t} = (q-r)S^3$$

where q and r represent, respectively, the mean emission and absorption of radiant energy per unit On inserting equations (2) and (5) in (1), we obta

$$\frac{\mathrm{d}}{\mathrm{d}t}(\varepsilon'S^3) + p'\frac{\mathrm{d}S^3}{\mathrm{d}t} = (-q + r)S^3$$


where

$$\varepsilon' = \varepsilon_k + \varepsilon_g, \quad p' = p_k + p_g$$


Radiative processes always act to diminish the $\epsilon'S^3$, because in an expanding universe photon

3. Galaxy formation: do analytics but don't forget the data or pretty colours

H, He cooling function

4. 1984: choose a new interdisciplinary field where there is a gap to be bridged

experiments to be developed theory to be defined

DARK MATTER

Where next in cosmology?

1. Dark energy

experiment

Euclid, DESI, LSST, PFS...

No end in sight

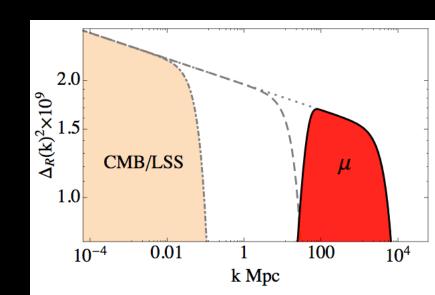
theory

Something new needed

Quintessence?

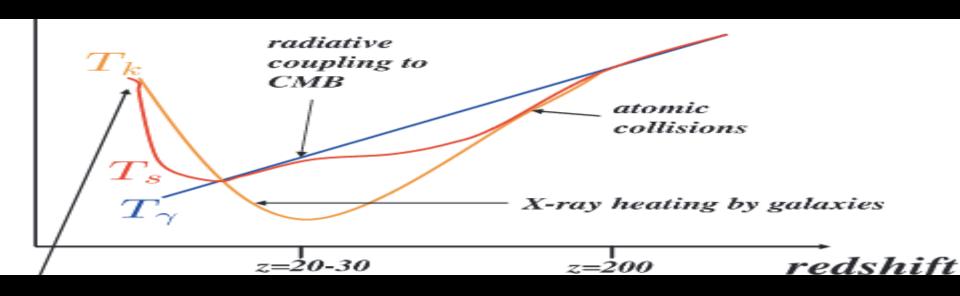
Multiverse ??

Where next in cosmology?

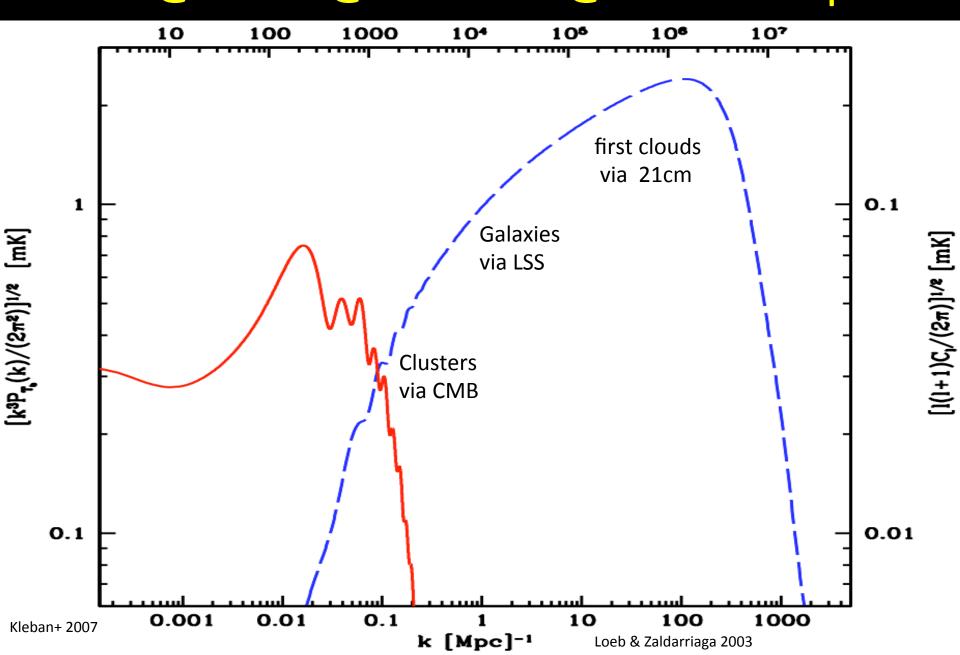

2. the CMB

to B or not to B

no robust prediction


Spectral distortions

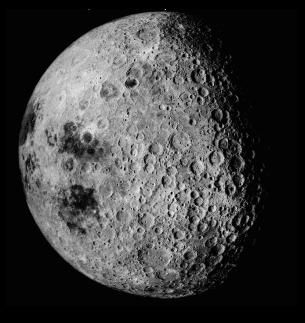
Just one number



Where next in cosmology?

3. the dark ages

21cm @ z=50 @ 30 MHz @ k~ 100 Mpc⁻¹

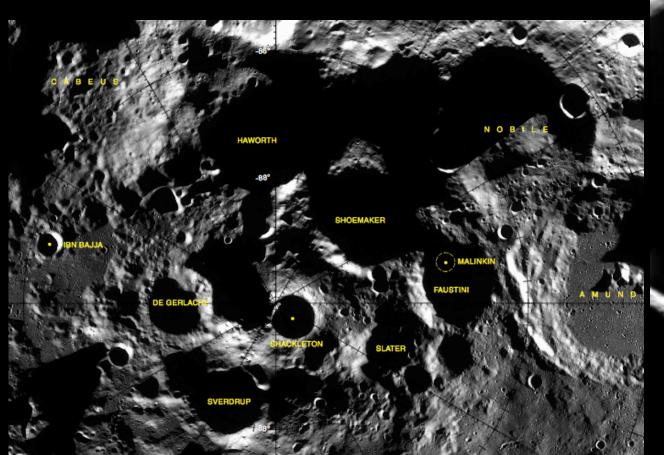

Primordial nongaussianity is predicted generically by inflation but its very low:


$$f_{NL} \sim n_s - 1 \sim 0.03$$
 $\delta T/T (1 + f_{NL} \delta T/T)$

need to go from
$$f_{NI}$$
~10 (CMB) to ~1 (LSS) to ~0.01

- $N \sim 10^6$ modes precision 0.1% CMB
- N~ 10⁸ 0.01% LSS
- $N^{\sim} 10^{12}$ (w. x 10^2 from tomography) 0.0001% 21cm@ 30 MHz

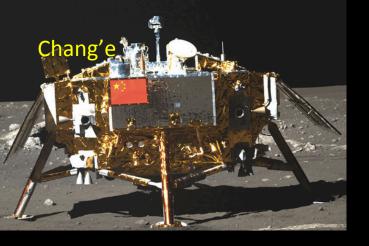
far side of MOON is most radio-quiet environment in inner solar system



Optimal telescope array is $\ell \lambda/2\pi$ or D ~100 km at λ ~ 10 m

need millions of dipoles for weak signal: $\frac{D^2}{4\lambda^2}$ ~10⁷

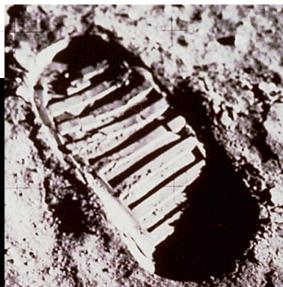
seek ~10mK signal in bright sky foreground T_B~1000K


lunar south pole sites for IR astronomy

Shackleton crater

eternal darkness & cold

la lumiere perpetuelle


Europe's space boss says 'now is the time to build a moon village' and pledges permanent lunar base by the end of the next decade

- ESA said the Moon was the 'right place to be' and Mars is 'ultimate destination'
- Said immediate goal was to have a permanent presence on the Moon, even if it was just a robot, by the end of
 the next decade

By AFP

PUBLISHED: 11:36, 28 September 2017 | **UPDATED:** 18:15, 28 September 2017

Current US presence

Trump wants to send U.S. astronauts back to moon, someday Mars

WASHINGTON (Reuters) - At a time when China is working on an ambitious lunar program, President Donald Trump vowed on Monday that the United States will remain the leader in space exploration as he began a process to return Americans to the moon.

U.S. President Donald Trump holds a space astronaut toy as he participates in a signing ceremony for Space Policy Directive at the White House in Washington D.C., U.S., December 11, 2017. REUTERS/Carlos Barria

Un grand merci a Elizabeth, Gary, Yohan et Madeleine!

Thank you all for coming to Paris...its been a wonderful occasion to reflect on Dark Matters!