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The Big Picture, circa 1967
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Orphans of Nucleosynthesis

The Big Picture, circa 1967
Heavy elements:

stars BBFH57, Cameron 57
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The Big Picture, circa 1967

Heavy elements:
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Lightest elements:
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Orphans of Nucleosynthesis

The Big Picture, circa 1967

Heavy elements:

stars BBFH57, Cameron 57
Lightest elements:

big bang wagoner, Fowler, Hoyle 67
Orphans:

most (~80%) of Solar 7Li
all of 6Li and Be and B
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The Big Picture, circa 1967
Heavy elements:

stars BBFH57, Cameron 57
Lightest elements:

big bang wagoner, Fowler, Hoyle 67
Orphans:

most (~80%) of Solar 7Li

all of ®Li and Be and B
LiBeB rare, but also fragile

lowest binding after D

stars destroy at ~2.7 x 10 K

Need non-thermal origin

solar abundance (?8Si = 106)
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Orphans of Nucleosynthesis

The Big Picture, circa 1967
Heavy elements:

stars BBFH57, Cameron 57
Lightest elements:

big bang wagoner, Fowler, Hoyle 67
Orphans:

most (~80%) of Solar 7Li

all of ®Li and Be and B
LiBeB rare, but also fragile

lowest binding after D

stars destroy at ~2.7 x 10 K
Need non-thermal origin

x-process stellar flares? ssrHs7
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Orphans of Nucleosynthesis

The Big Picture, circa 1967
Heavy elements:

stars BBFH57, Cameron 57
Lightest elements:

blg bang Wagoner, Fowler, Hoyle 67

Orphans:

most (~80%) of Solar 7Li
all of 6Li and Be and B

LiBeB rare, but also fragile
lowest binding after D
stars destroy at ~2.7 x 10 K

Need non-thermal origin

x-process stellar flares? ssrHs7
protostars (T-Tauri)

Fowler Greenstein & Hoyle 62
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What about cosmic rays?

Reeves, Audouze et al (+Silk!):

Cosmic rays are nonthermal
Could they do the job?

Key hint: R

: « Solar System
L,Be[B abundgnces anomalouslyg | o Cosmic Rays (observed)
high in cosmic rays

Why?
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A8 What about cosmic rays?

Reeves, Audouze et al (+Silk!): (‘Y
Cosmic rays are nonthermal |
Could they do the job?
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Cosmic-Ray Nucleosynthesis

Reeves, Fowler, Hoyle 1970; Meneguzzi, Audouze, Reeves 1971; Walker, Mathews, Viola

Cosmic Rays interact with ISM
Interstellar gas: beam dump

* Observe in gamma-ray sky

Der + Pgas — ppﬂ_o
™ — Y

 Stable debris created
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Cosmic Rays interact with ISM
Interstellar gas: beam dump

* Observe in gamma-ray sky
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 Stable debris created
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Spallation: p,a+ C,N,0O all of Li,Be,B




Cosmlc -Ray Nucleosynthesns

s, Fowler, Hoyle 1970; Meneguz s 1971; Walker, Mathews, Viola

Cosmic Rays interact with ISM
Interstellar gas: beam dump

* Observe in gamma-ray sky
Pcr + pgas — ppﬂ-o

™ =YY
 Stable debris created

2K

Spallation: p,a+ C,N,0O all of Li,Be,B

)fy

Li and "Li only




Cosmlc -Ray Nucleosynthesns

s, Fowler, Hoyle 1970; Meneguz s 1971; Walker, Mathews, Viola

Cosmic Rays interact with ISM
Interstellar gas: beam dump

* Observe in gamma-ray sky
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™ =YY
 Stable debris created

2K

Spallation: p,a+ C,N,0O all of Li,Be,B

need metals in projectiles or targets
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i and 7Ll only




Cosmic-Ray Nucleosynthesis

Reeves, Fowler, Hoyle 1970; Meneguzzi, Audouze, Reeves 1971; Walker, Mathews, Viola

Cosmic Rays interact with ISM
Interstellar gas: beam dump

* Observe in gamma-ray sky
Pcr + pgas — ppﬂ-o

™ =YY
 Stable debris created

2K

Spallation: p,a+ C,N,0O all of Li,Be,B

need metals in projectiles or targets

Fusion: () ‘ *

no metals required--helium is prlmordlal

i and 7Ll only




Cosmic Ray Acceleration:
Astrophysical Shocks

In magnetized collisionless shocks:
shock deceleration

.= converging flows

charged particles scatter off
magnetic inhomogeneities

repeatedly cross shock,
gain energy

with some chance of escape
result: power-law spectrum
2
AN/dE x E~CT4/M) _, p=2

) SN 106 X-ray/adio/OticaI




Galactic Cosmic Rays

composition: mostly protons

heavier nuclei in roughly ISM
proportions

spectrum: nonthermal
power law with breaks

sources: Supernovae
Galactic CR flux:

SNe also sites of metal production:

Li production:
rate
abundance




Galactic Cosmic Rays
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composition: mostly protons

heavier nuclei in roughly ISM
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spectrum: nonthermal
power law with breaks

sources: Supernovae
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Galactic Cosmic Rays

H.ES.S. RX J1713-3946

composition: mostly protons

heavier nuclei in roughly ISM
proportions

spectrum: nonthermal
power law with breaks

sources: Supernovae

Galactic CR flux:
(I)cr X RSN

SNe also sites of metal production:

d
RSN X %Z

RA J2000.0 (hrs
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Galactic Cosmic Rays

H.ES.S. RX J1713-3946

composition: mostly protons

heavier nuclei in roughly ISM
proportions

spectrum: nonthermal
power law with breaks

sources: Supernovae

Galactic CR flux:
(I)cr X RSN

SNe also sites of metal production:

d
RSN X %Z

Li production: aa — °Li+ -

d

d _.
rate %Ll‘gcr’vq)aaaa X %Z

abundance Li|gcr x< 7







Galactic Cosmic Rays:
Archaeology

Prantzos, Cassé, Vangioni-Flam 1993; Walker et al 1993; BDF Olive & Schramm 1994; Ramaty, Kozlovsky, & Lingenfelter 1996

LiBeB as Cosmic Ray Dosimeters
Solar LiBeB: cumulative irradiation at Sun birth

Galactic cosmic rays are only conventional 6Li,°Be,'°B source
neutrino spallation in supernovae (nu process) also makes ’Li, 'B
LiBeB in halo stars: cosmic-ray fossils

Cosmic rays present in early Galaxy!
LiBeB probe cosmic ray origin & history

Cosmic Rays explain
Be evolution over entire measured metallicities

latest data: “primary” linear Be vs O slope

points to metal-rich cosmic rays

Duncan et al; Casse et al; Ramaty et al; Prantzos poster
solar abundances of ¢Li,'°B
bulk of B evolution

supernova neutrino process “tops off” 1B, adds “Li
Woosley et al 1990; Kajino talk

cosmic rays + neutrinos underproduce solar “Li: need another
source
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points to metal-rich cosmic rays

Duncan et al; Casse et al; Ramaty et al; Prantzos poster
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Galactic Cosmic Rays and
Halo Star Lithium

e Cosmic rays pollute primordial Li
7l-iobserved = 7LiCR+7|-iB|3N 10~
But SLiBeBgcr=—)%"Ligcr
Infer true "Liggy !

e Consequences - |
—predict small positive slope: " ; p i totel

f"' L1

dLl E : i ‘L1 primordia

Li = Lipp, + Fe

dFe B . 4 7] 1 process

l 1 1 1 l

Cr .
— makes ‘Li problem slightly worse! 10 <—————————" “Th

~10% downwards correction [ Fe/H ]
at [Fe/H]=-3 Ryan, Olive, Beers, BDF, Norris 2000




°Li and Cosmic Rays

Cosmic-Ray prediction: O

linear metal scaling 61 - CMB-+BBNS
61 - d°Li 2.5

Li= FIa Fe :

€ Cr sol A

inconsistent with a °Li plateau!

1.5

because CR interactions I
unavoidable: 1.0}

5Li non-detection at [Fe/H]>-1.5
disagrees with CR prediction

suggests depletion must
operate at least in this
regime

—2.9 —2.0 —1.5 —1.0 —0.5 0.0

[Fe/H]
Data: Asplund et al 2006




Pre-Galactic Cosmic Rays:
Pop lll Stars

First stars (Poplll) —==
Zero metallicity star formation 97, %
thought to lead to ~few stars x

per halo
massive to supermassive Ael et &I, Science 20

Explosions would be sources

Of COSmiC rayS Rollinde, Vangioni, Olive, Silk;

Kusukabe

once outside of birth remnant,
produce lithium in metal-free
environment

can give °Li “plateau” without
substantial disruption to “Li

gamma-ray signal redshifted,
small

log (°Li/H), log (Li/H)

-2
[Fe/H]

Rollinde, Vangioni, & Olive 2006



http://adsabs.harvard.edu/abs/2006ApJ...651..658R
http://adsabs.harvard.edu/abs/2006ApJ...651..658R

Shock Power for Acceleration of
Cosmological Cosmic Ravs

dark matter potentials drive baryon flows
If flow speed > sound speed: shocks

Cosmic accretion shocks:
High Mach
Long-lived
Large power
Ideal sites for particle acceleration!

Ryu et al 2003
Shock surfaces, Mach colors
(25 h-1 Mpc)3 simulation




Shock Power for Acceleration of
Cosmological Cosmic Rays

dark matter potentials drive baryon flows
If flow speed > sound speed: shocks

Cosmic accretion shocks:
High Mach
Long-lived
Large power
Ideal sites for particle acceleration!

Structure Formation Cosmic Rays
e An inevitable fact of baryonic life?
e Acceleration begins before galaxy birth?

e Galaxy clusters:
nonthermal radio Fusco-Femiano et al 99
but no gamma rays Ackermann etal 2010
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Pavlidou & BDF 2006
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Cosmological Cosmic Rays

dark matter potentials drive baryon flows
If flow speed > sound speed: shocks

Cosmic accretion shocks:
High Mach
Long-lived
Large power
Ideal sites for particle acceleration!

Structure Formation Cosmic Rays
e An inevitable fact of baryonic life?
e Acceleration begins before galaxy birth?
e Galaxy clusters:
nonthermal radio Fusco-Femiano et al 99

but no gamma rays Ackermann etal 2010

Structure Formation CR Nuke
Primordial beam, targets:
produce ©Li and “Li only,
no Be & B
no correlation with metals
Plateau candidate!
also see Prodanovic poster
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Shock Power for Acceleration of
Cosmological Cosmic Rays

dark matter potentials drive baryon flows
If flow speed > sound speed: shocks

Cosmic accretion shocks:
High Mach
Long-lived
Large power
Ideal sites for particle acceleration!

Structure Formation Cosmic Rays
e An inevitable fact of baryonic life?
e Acceleration begins before galaxy birth?
e Galaxy clusters:
nonthermal radio Fusco-Femiano et al 99

but no gamma rays Ackermann etal 2010

Structure Formation CR Nuke
Primordial beam, targets:

produce ©Li and “Li only,

no Be & B

no correlation with metals
Plateau candidate!
also see Prodanovic poster
But how disentangle primordial Li?

Power (foes / cen)

)
N
[a—

— Accretion Shocks|
— Supernovae

1

2

Redshift

3

Pavlidou & BDF 2006




The Fermi Era




Paleolithography:
Gamma-Ray Probes of Cosmic-Ray History

Prodanovic & BDF

Hadronic gamma production
inevitably means lithium synthesis

Observables
star-forming galaxies: new source class!
probes global cosmic-ray/ISM interactions
gamma background: measure mean CR fluence across universe
lithium abundance: measures local CR fluence

Complementary:
use one to probe the other
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Hadronic gamma production pp — 7 — vy

inevitably means lithium synthesis oo — T + -

Observables

star-forming galaxies: new source class!
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probes global cosmic-ray/ISM interactions ‘< FermisMC
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Paleolithography:
Gamma-Ray Probes of Cosmic-Ray History

Prodanovic & BDF

Hadronic gamma production pp — 7 — vy

inevitably means lithium synthesis oo — T + -

Observables

star-forming galaxies: new source class!
.

probes global cosmic-ray/ISM interactions —s T

EE— ]
-20 0

gamma background: measure mean CR fluence across universe
lithium abundance: measures local CR fluence

Li [ ®cr(local) dt

v [ ®cr(ypath) dt

All-Sky, 2-years, >100 MeV
Fermi LAT




Paleolithography:
Gamma-Ray Probes of Cosmic-Ray History

Prodanovic & BDF

Hadronic gamma production pp — 7 — vy

inevitably means lithium synthesis oo — T + -

Observables
star-forming galaxies: new source class!
probes global cosmic-ray/ISM interactions Eormi LMC
gamma background: measure mean CR fluence across universe

lithium abundance: measures local CR fluence

Li [ ®cr(local) dt

v [ ®cr(ypath) dt

Complementary:

use one to probe the other
All-Sky, 2-years, >100 MeV

Fermi LAT
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Diffuse Gamma-Ray Background
Unresolved Normal Galaxies?

working hypothesis:
supernovae are engines of
cosmic-ray acceleration

star formation=3SN => cosmic rays
gamma signal:

I~ / (cosmic star form) x (ISM targets)
los

shape: Galactic/pionic feature
redshifted

amplitude: substantial part of
preliminary Fermi signal

Fits! Can saturate but does
not overproduce background

consistent with solar lithium
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working hypothesis:
supernovae are engines of
cosmic-ray acceleration

star formation=3SN => cosmic rays
gamma signal:

I~ / (cosmic star form) x (ISM targets)
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shape: Galactic/pionic feature
redshifted

amplitude: substantial part of
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consistent with solar lithium
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1019x7Li /H
Cosmic-ray interactions with diffuse gas unavoidably produce lithium
only conventional source of °Li, °Be, 1°B
important source of ‘Liand ''B

nucleosynthesis of last resort

5LiBeB observed in halo stars
cosmic rays existed in past
abundance evolution traces cosmic-ray history

Cosmic-ray °Li and ’Li adds to Spite plateau
leads to small positive slope
contaminates primordial signal
worsens (slightly) the lithium problem -- a bitter pill?

but also makes problem more pressing and interesting
The Fermi Era
Gamma-rays produced by same cosmic-ray interactions
probe Galactic and pre-Galactic synthesis




Thanks to the Organizers!

Vive le Lithium!




