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‣ all of  6Li and Be and B

LiBeB rare, but also fragile
‣ lowest binding after D
‣ stars destroy at ~2.7 x 106 K

Need non-thermal origin
‣ x-process stellar flares?  BBFH57

‣ protostars (T-Tauri)  
Fowler Greenstein & Hoyle 62
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α + α
6Li and 7Li only

Cosmic-Ray Nucleosynthesis
Reeves, Fowler, Hoyle 1970; Meneguzzi, Audouze, Reeves 1971; Walker, Mathews, Viola 

Cosmic Rays interact with ISM
Interstellar gas: beam dump

• Observe in gamma-ray sky

• Stable debris created

Spallation:

Fusion:

pcr + pgas → ppπ
0

π
0
→ γγ

need metals in projectiles or targets

no metals required--helium is primordial



Cosmic Ray Acceleration:  
Astrophysical Shocks

dN/dE ∝ E−(2+4/M2)
→ E−2

Image:  Matthew Baring

In magnetized collisionless shocks:

★ shock deceleration 

converging flows

★ charged particles scatter off  
magnetic inhomogeneities

★ repeatedly cross shock, 

gain energy

with some chance of  escape

★ result:  power-law spectrum 

SN 1006 X-ray/Radio/Optical
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LiBeB as Cosmic Ray Dosimeters

Solar LiBeB:  cumulative irradiation at Sun birth
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Ryan, Olive, Beers, BDF, Norris 2000

• Cosmic rays pollute primordial Li
 7Liobserved = 7LiCR+7LiBBN 
 But 6LiBeBGCR     6,7LiGCR

 Infer true 7LiBBN !

• Consequences
– predict small positive slope:

– makes 7Li problem slightly worse!
~10% downwards correction             

at [Fe/H]=-3

Galactic Cosmic Rays and 
Halo Star Lithium

Li = Libbn +
dLi

dFe

∣

∣

∣

∣

cr

Fe



6Li and Cosmic Rays

Cosmic-Ray prediction:
‣ linear metal scaling

inconsistent with a 6Li plateau!

because CR interactions 
unavoidable:

‣ 6Li non-detection at [Fe/H]>-1.5 
disagrees with CR prediction

‣ suggests depletion must 
operate at least in this 
regime

Data:  Asplund et al 2006

6
Li =

d6Li

dFe

∣

∣

∣
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cr
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Pre-Galactic Cosmic Rays:
Pop III Stars

First stars (PopIII)
‣ Zero metallicity star formation
‣ thought to lead to ~few stars 

per halo

‣ massive to supermassive

Explosions would be sources 
of  cosmic rays  Rollinde, Vangioni, Olive, Silk; 

Kusukabe 
‣ once outside of  birth remnant, 

produce lithium in metal-free 
environment

‣ can give 6Li “plateau” without 
substantial disruption to 7Li

‣ gamma-ray signal redshifted, 
small

Rollinde, Vangioni, & Olive 2006

Abel, Bryan, & Norman

http://adsabs.harvard.edu/abs/2006ApJ...651..658R
http://adsabs.harvard.edu/abs/2006ApJ...651..658R


Shock Power for Acceleration of  
Cosmological Cosmic Rays

dark matter potentials drive baryon flows 

If  flow speed > sound speed:  shocks 

Cosmic accretion shocks:
ü High Mach
ü Long-lived
ü Large power
Ideal sites for particle acceleration!

Ryu et al 2003

Shock surfaces, Mach colors

(25 h-1 Mpc)3 simulation
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• An inevitable fact of  baryonic life?
• Acceleration begins before galaxy birth?

• Galaxy clusters:  

– nonthermal radio Fusco-Femiano et al 99

– but no gamma rays Ackermann et al 2010

Structure Formation CR Nuke
Primordial beam, targets:

ü produce 6Li and 7Li only, 
ü no Be & B
ü no correlation with metals

Plateau candidate!   
also see Prodanović poster
But how disentangle primordial Li?

Pavlidou & BDF 2006
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Diffuse Gamma-Ray Background

Curves:  BDF, Pavlidou, Prodanovic 2010

Unresolved Normal Galaxies?

I ∼

∫
los

(cosmic star form) × (ISM targets)

working hypothesis:  
supernovae are engines of  
cosmic-ray acceleration
star formation      SN        cosmic rays 

✓gamma signal:  

✓shape: Galactic/pionic feature 
redshifted

✓amplitude:  substantial part of 
preliminary Fermi signal

✓Fits!  Can saturate but does 
not overproduce background

✓consistent with solar lithium

✓limits cosmic-ray activity not 
associated with star formation 
(e.g., structure form)



Diffuse Gamma-Ray Background

Curves:  BDF, Pavlidou, Prodanovic 2010
Points:  Fermi (Abdo et al 2010) 
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Cosmic-ray 6Li and 7Li adds to Spite plateau
‣ leads to small positive slope
‣ contaminates primordial signal
‣ worsens (slightly) the lithium problem -- a bitter pill?

but also makes problem more pressing and interesting

The Fermi Era
‣ Gamma-rays produced by same cosmic-ray interactions 
‣ probe Galactic and pre-Galactic synthesis



Thanks to the Organizers!

Vive le Lithium!


