Atomic diffusion and lithium processing in old metal poor stars

Olivier Richard

LUPM UMR5299, Université Montpellier II, Montpellier, France

Main collaborators:

Georges Michaud, Jacques Richer (Montréal, Canada)

Andreas Korn (Uppsala, Sweden)

- atomic diffusion in stellar modeling,
- atomic diffusion at work in population II stars: Effects in the center, on surface abundances, and the effect of initial metallicity,

Transport in the radiative zone:

chemical composition variations in the radiative zone due to particles transport processes

- Competition between g and g_{rad} approx. determines movement of elements
- Competing transport
 processes can hinder diffusion

G. Alecian, 2002

Burger's equations

Expression used in evolution calculations

$$\frac{m_i N_i \left(g_i^{rad} - g\right) + N_i Z_i \left(eE\right) - \frac{\partial P_i}{\partial r} = -\sum_j K_{ij} \left[\left(w_j - w_i\right) + z_{ij} \frac{m_j r_i - m_i r_j}{m_i + m_j} \right]}{\frac{5}{2} N_i k \frac{\partial T}{\partial r} = \sum_j K_{ij} \left[-\frac{5}{2} \frac{m_j z_{ij}}{m_i + m_j} \left(w_j - w_i\right) - a_{ij} r_i + b_{ij} r_j \right]}$$

- 2 equations for each species (28 in the code)
- Solved for each mesh points (~1500)
- and at each time step (~1000)

Radiative accelerations

Expression used in evolution calculations

Mixing parametrization

Expression used in evolution calculations

$$D_T = 400 D_{\text{He}}(T_0) \left(\frac{\rho}{\rho(T_0)}\right)^{-3}$$

Notation T6.0 => $\log(T_0)$ =6.0

Abundance variations in metal poor stars: 0.8*M*_o, [Fe/H]=-2.31

Effect of diffusion in the center of the star

0.8*M*_o, [Fe/H]=-2.31

Globular cluster age: M92 case

Age reduction: ~10%

Predicted surface abundances

Richard et al., 2002a

Factor of ~1000 in the predicted surface Fe abundance

Lithium abundance and radiative acceleration in a 0.77 M_o, [Fe/H]=-3.31

Li abundance decrease due to atomic diffusion and nuclear burning

0.77 *M*_o, [Fe/H]=-3.31

Lithium dredge-up after TO

Lithium in models for [Fe/H]=-2.31

Richard et al., 2005

13.5Gyr isochrones for mainsequence models

Primordial Lithium and the spite plateau

Abundance variation with Teff for [Fe/H]=-2.11

12.5Gyr isochrones for TO and past TO models

Globular cluster NGC6397

Effect of metallicity on Fe surface abundance

g_{rad}>g for models with [Fe/H]_{init}< -1.31

Li and Fe surface abundances evolution at different metallicity

 $0.8 M_{\odot}$

on Fe for very metal poor stars

^{=&}gt; thermohaline convection ?

Conclusion

Atomic diffusion have also to be taken into account in population II stars. It's lead to better agreement between cosmology and stellar physics (Lithium problem, globular cluster age)

- Lithium abundances at subgiant branch stage gives constraints on competing processes
- Atomic diffusion is need in models to better understand the physics of these competing processes
- Radiative acceleration could have strong effects on very metal poor stars
- Even if atomic diffusion is reduced by competing processes in the superficial zones effects remain in the center