Discovery of 13 Lithium-rich Red Giants in Milky Way Dwarf Satellite Galaxies

Xiaoting FU

(National Astronomical Observatories of China)

Evan Kirby (Caltech), Puragra GuhaThakurta (UCSC), Licai Deng (NAOC)

xtfu@nao.cas.cn

SPACE TELESCOPE SCIENCE INSTITUTE

Lithium in the cosmos, Feb,28, IAP

WHY Lithium Giants are unusual?

High temperature

• Lithium is easily destroyed in the stellar interiors at temperatures higher than $\sim 2.5 \times 10^{6}$ K (7Li) $\sim 2.0 \times 10^{6}$ K (6Li)

hium

High remperature

A(Li) <0.5 is typical for stars on the upper red giant branch(RGB) (Lind et al. 2009).

Former discoveries

Former discoveries

43 field stars, 2 GC stars, 3 dSph stars

This is the third time.

Before our work,

people only know 3 Lithium Giants in the Milky Way dwarf galaxies, Now, we have **13** more.

The measurements are based on: KECK /DEIMOS medium-resolution spectroscopy (MRS) R=6500

dSph	Date
Sculptor	2008 Aug 3 , Aug4 , Aug 31, Sep 1, Sep 1
Fornax	2008 Sep 1 , Nov 25, Nov 26, Aug 31, Sep 30
Leo I	2003 Oct 29, 2003 Oct 15, 2006 Feb 2,Feb 3,Feb 4
Sextans	2009 Feb 22, Feb 23
Leo II	2006 Feb 2, Feb 3, Feb 4
Canes Venatici I	2007 Feb 14, Feb 15
Ursa Minor	2009 Feb 22, Feb 23
Draco	2009 May 23, May 24

Kirby et al. 2010, ApJS 191,352

Target:

4880 stars in eight dwarf satellite galaxies of the Milky Way (MW):

Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco.

Distance: 85 – 220 kpc

Confirm a Carbon star with Lithium

Domínguez et al. A&A 422, 1045-1052 (2004)

670092 in Draco

How we tell they are Giants in dSph

✓ They are not dwarf nearby: check the Na doublet near 8190 Å

- ✓ They are velocity (Vhelio) members
- ✓ They are at right position in CMD
- We get 2961 members in the 8 dSphs from 4880 stars

Sculptor Fornax Leo I

Leo II Canes Venatici I

Lithium abundance analysis

ATLAS9 atmosphere model and MOOG

Lithium abundance analysis

The Li-rich giants show no correlation with evolutionary state.

Kirby, Fu & Guhathakurta, Deng, to be submitted to ApJ

How to explain the existence of Lithium?

Explanation 1

By the ingestion

of a planet or a brown dwarf because of the expansion of the stellar atmosphere

> BUT, Still Metal-poor

mass transfer

from a AGB companion. The massive AGB can produce lithium via Hot Bottom Burning (HBB).

BUT, the dSphs are too old to have the massive AGB in 4-7 solar mass. The giant stars **produced** fresh Lithium themselves.

Cameron & Fowler (1971)

Cool Bottom Processing (CBP)? Sackmann & Boothroyd, 1999

Lithium flash?

Palacios et al. 2001

Lithium circumstellar shell? de la Reza et al. 1996

Still a challenge for standard stellar evolution models

High resolution spectra follow up?

Conclusion:

13 super lithium-rich red giants are present in Milky Way dwarf galaxies: Sculptor, Fornax, Leo I, Leo II and Vanes Venatici I. The Li-rich giants show no correlation with evolutionary state. The lithium in these stars must have been created in the RGB themselves rather than saved from destruction. • We are now calculating the lithium abundance upper limit to every single giants in the dwarf galaxies and make lithium distribution comparison among the dSphs, field stars and **Globular Cluster**

Thank you!

RA

