

⁶Li detection in metal-poor stars: Can 3D model atmospheres solve the second lithium problem?

Matthias Steffen Leibniz-Institut für Astrophysik Potsdam (AIP)

Roger Cayrel Piercarlo Bonifacio Elisabetta Caffau Hans-Günter Ludwig

. . .

Can 3D model atmospheres solve the second lithium problem?

M. Steffen, R. Cayrel, P. Bonifacio, E. Caffau, H.-G. Ludwig, et al.

- Introduction: Line asymmetry due to stellar granulation and ⁶Li
- Method of analysis: 3D NLTE line formation calculations for lithium
- Results:

> 1D \rightarrow 3D correction of the Asplund et al. (2006) ⁶Li abundances

- 3D NLTE analysis of real stars: G020-024, G271-162, HD 160617, HD 74000, G275-4, HD 84937
- Conclusions

The second lithium problem

A radical solution of the 2nd lithium problem

Line shift, line asymmetry, and the ⁶Li/⁷Li isotopic ratio determination *****

Roger Cayrel¹, Matthias Steffen², Hum Chand³, Piercarlo Bonifacio^{4,5,6}, Monique Spite⁴, François Spite⁴, Patrick Petitjean³, Hans-Günter Ludwig^{4,5}, and Elisabetta Caffau⁴

A&A 473, L37 (2007)

Instead of invoking new physics, we considered the possibility that ...

- Previous ⁶Li detections are only upper limits ignoring the intrinsic, convection-induced line asymmetry results in a systematic overestimation of the ⁶Li abundance
- A systematic reappraisal of former determinations of ⁶Li abundances in halo stars is needed requires spectra of the highest possible quality

Spectroscopic signature of ⁶Li

Spectroscopic signature of ⁶Li

High-quality spectra needed ($R \ge 100\ 000$, $S/N \ge 500$)

Determination of the ⁶Li / ⁷Li isotopic ratio

• Fitting of observed spectrum with grid of synthetic line profiles

- Fixed: ξ_{mic} , v sin i, FWHM (instrumental)
- 4 free fitting parameters:
 - → Lithium abundance:
 - ➔ Isotopic ratio:
 - Residual line broadening:
 - ➔ Global Doppler shift:

A(⁶Li + ⁷Li) ⁶Li / ⁷Li ξ_{mac} ΔV

⁶Li detection in HD84937

Stellar granulation and convective line asymmetry

Strong blue-shifted + weak red-shifted profile -> asymmetry

After Dravins et al. (1981)

CO⁵BOLD 3D hydrodynamical simulations of surface convection in metal-poor stars

Spectroscopic signature of convection in the atmospheres of metal-poor stars

Fitting procedure: 1D versus 3D

1D fitting: symmetric ⁷Li profile

3D fitting: asymmetric ⁷Li profile

3D analysis expected to yield higher ⁶Li / ⁷Li isotopic ratio

3D-NLTE line formation in metal-poor stars

- 1. Radiation field $\mathcal{J}_{v}(x,y,z), v : UV .. IR$
- 2. Photo-ionization rates for all levels i
- 3. Statistical equilibrium equations
- \rightarrow departure coefficients *bi*(x,y,z)

Cayrel, Steffen, et al. (2009)

Lithium model atom

 $H + Li \leftrightarrow H^- + Li^+$: Barklem et al. 2003

Li 6707: 3D line formation in LTE / NLTE

Li line strength smaller by factor \approx 2 in NLTE

Li 6707: 3D line formation in LTE / NLTE

Li 6707: 3D line formation in LTE / NLTE

The CO5BOLD 3D model atmosphere grid

3D NLTE corrections of ⁶Li / ⁷Li derived with 1D LTE

Purely theoretical method based on synthetic line profiles:

• Fitting the same Li 6707 profile with 1D LTE and 3D NLTE

4 free fitting parameters:

Lithium abundance: $A(^{6}Li + ^{7}Li)$ Isotopic ratio: $^{6}Li / ^{7}Li$ Residual line broadening: ξ_{mac} Global Doppler shift: ΔV

- Fixed: ξ_{mic} , v sin i, FWHM (instrumental)
- Result: ∆ (⁶Li / ⁷Li)

= correction for intrinsic line asymmetry (T_{eff} , log g, [Fe/H])

⁶Li correction for intrinsic line asymmetry

⁶Li detection by Asplund et al. (2006)

⁶Li detection by Asplund et al. (2006) corrected

⁶Li / ⁷Li distribution before and after correction

Preliminary ⁶Li / ⁷Li results for six real stars

Star	Teff [K]	log g	[Fe/H]	1D LTE (A2006)	1D LTE *)	3D NLTE *)	Spectr *)	
G020-024	6247	3.98	-1.89	7.0	11.7	9.5	<u>UVES</u>	?
HD 160617	5990	3.79	-1.76	3.6	08	-1 7	HARPS	?
G271-162	6230	3.93	-2.30	1.9	2.1	0.4	<u>UVES</u>	9
HD 74000	6203	4.03	-2.05		0.6	-1.1	HARPS	9
HD 84937	6310	4.10	-2.40		6.5	4.8	<u>GECKO</u>	\$
G275-4	6338	4.32	-3.21		4.5	3.5	<u>UVES</u>	\$

⁶Li / ⁷Li insensitive to assumed $v \sin i$

Using additional "calibration lines"

- Fixed: ξ_{mic} , v sin i, FWHM (instrumental)
- Fixed: ξ_{mac} , (macroturbulence) from calibration lines
- Fitting of observed Li 6707 with grid of synthetic line profiles
- 3 free fitting parameters:
 - Lithium abundance:
 - ➔ Isotopic ratio:
 - ➔ Global Doppler shift:

1D LTE fitting of HD 74000 calibration lines Anti-correlation between line broadening and ⁶Li abundance

Conclusions

- Taking intrinsic line asymmetry into account in 3D NLTE reduces the ^{6}Li / ^{7}Li ratio by $\approx 2\%$
- Correcting the Asplund et al. (2006) sample reduces the number of 2σ detections from 9 to 2 (G020-024, HD 102200)
- Remaining detections under 3D NLTE HD 84937: ${}^{6}\text{Li} / {}^{7}\text{Li} \approx 4.8\%$ (2 σ detection) G275-4: ${}^{6}\text{Li} / {}^{7}\text{Li} \approx 3.5\%$ (?)
- Fixing the broadening of Li from other lines is problematic (choice of lines) → overestimation of ⁶Li / ⁷Li
- Further investigations necessary Spectra of even higher quality