Kinematic, lensing & X-ray mass estimates of a poor cluster

A. Biviano (Trieste, I)

P. Popesso, J.P.Dietrich, Y.-Y. Zhang, G. Erfanianfar, M. Romaniello, B. Sartoris

The Physics of Groups, Paris, Dec. 13th 2016

Bower+97: optically selected distant clusters have low L_X for their velocity dispersion, probably overestimated because of projection effects (filaments along the los) or because of a large population of infalling galaxies

Matching discrepancies X-ray and optical cluster samples (Donahue+02, Gilbank+04, Basilakos+04, S<u>adibekova+14</u>)

The Physics of Groups, Paris, Dec. 13th 2016

XMM undetection

Popesso, AB+07: "Abell X-ray Underluminous (AXU) clusters":

spectroscopically confirmed Abell clusters with unsecure X-ray detection.

AXU stacked distribution of rest-frame cluster galaxy velocities is long-tailed in the outer regions, suggestive of an infalling population.

AXU clusters appear to have lower galaxy number density near the center than X-ray-normal Abell clusters, and higher bluer galaxy fraction.

Dietrich, AB, Popesso+09: "Weak lensing observations of potentially X-ray underluminous galaxy clusters": A315 @z=0.174 & A1456 @z=0.135, observed with WFI@ESO/MPG-2.2m to obtain their masses via Weak Lensing

Weak Lensing Mass maps:

clear detection for A315

no detection for A1456

The Physics of Groups, Paris, Dec. 13th 2016

Dietrich, AB, Popesso+09: "Weak lensing observations of potentially X-ray underluminous galaxy clusters": A315 @z=0.174 & A1456 @z=0.135, observed with WFI@ESO/MPG-2.2m to obtain their masses via Weak Lensing

Masses from lensing confirms A315 is X-ray underluminous for its mass (AXU) while A1456 is not

Bimodal velocity distribution of A1456: unrelaxed dynamical state or projection effects → mass overestimate from velocity dispersion

The Physics of Groups, Paris, Dec. 13th 2016

A315: new data

VIMOS@VLT spectroscopic observations: 479 reliable redshifts, $\delta v \sim 110$ km/s + SDSS-III DR10: 499 redshifts, 32 in common \rightarrow total: 946 redshifts in 1° 12' x 45' field

Number-density map of photometric members used to define cluster center as density peak (yellow +) (yellow diamond: weak lensing peak from *Dietrich*, *AB*+09)

A315: members

Cluster members identified in projected phase-space diagram using the **Shifting Gapper** method (Fadda+96) – confirmed by the **Clean** method (Mamon, AB, Boué 13)

222 cluster members identified (filled dots)

 σ_v = 603 ± 30 km/s

Assuming NFW M(r), mass concentration from c-M relation of Macciò+08, velocity anisotropy profile from Mamon+Łokas 05,

 $\sigma_v \rightarrow r_{200}^{\sigma} = 1.24 \pm 0.06 \text{ Mpc}$

Note: G M₂₀₀=100 H(z)² r₂₀₀³

A315: substructures

Use the **DSb** algorithm (*AB*+96,+02; after *Dressler*+*Shectman* 88) to identify substructures: 17 cluster members assigned to subclusters (green dots) \rightarrow 205 cluster members left

The Physics of Groups, Paris, Dec. 13th 2016

A315: substructures

Use KMM algorithm (*McLachlan & Basford 88; Ashman+94*) on remaining 205 members: chek for bimodality in velocity distribution. 2-Gaussian fit significantly better than 1-Gaussian fit for $R \le r_{200}^{\sigma}$ velocity distribution. 1-Gaussian fit is adequate for $R > r_{200}^{\sigma}$ velocity distribution.

The centers of the inner KMM-main cluster and KMM-subcluster are 0.7 Mpc apart.

The Physics of Groups, Paris, Dec. 13th 2016

Caustic method (*Diaferio & Geller 97; Diaferio 99*): discontinuity in projected-phase space is related to escape velocity of galaxies from the cluster potential. Method is robust vs. presence of subcluster \rightarrow we do not remove DSb and KMM subclusters from the analysis

However this method does not provide strong constraints on the cluster mass:

r₂₀₀^C=0.9 [-0.3,+0.6] Mpc

At face value, $r_{200}^{c} < r_{200}^{\sigma}$

The Physics of Groups, Paris, Dec. 13th 2016

MAMPOSSt method (*Mamon, AB, Boué 13*): Maximum Likelihood analysis of the projected phase-space distribution of cluster members, finding best-fit for models of M(r) and the velocity anisotropy profile based on the Jeans equation for dynamical equilibrium.

Use $R \le r_{200}^{\sigma}$ members, excluding DSb substructures; weigh the MAMPOSSt likelihood by the member probabilities of belonging to the KMM-main cluster

Use MAMPOSSt in 'Split' mode, fitting the spatial distribution of cluster members separately from their velocity distribution: (projected) NFW with $r_{-2,\nu}$ =1.0 [-0.3,+0.7] Mpc

MAMPOSSt method (Mamon, AB, Boué 13):

3 models for the mass profile M(r) - mass density profile $\rho(r)$:

A) Burkert 95, 'Bur', $(d \log \rho / d \log r)_0 = 0$, $(d \log \rho / d \log r)_{\infty} = -3$ B) Hernquist 90, 'Her', $(d \log \rho / d \log r)_0 = -1$, $(d \log \rho / d \log r)_{\infty} = -4$ C) Navarro+ 96,97, 'NFW', $(d \log \rho / d \log r)_0 = -1$, $(d \log \rho / d \log r)_{\infty} = -3$

4 models for the velocity anisotropy profile $\beta(r) \equiv 1 - (\sigma_t / \sigma_r)^2$:

a) constant, b) Mamon+Łokas 05, c) Osipkov 79 + Merritt 85, d) modified-Tiret+07

3 Free parameters:

(1) r₂₀₀, the mass profile normalization
(2) r₋₂, the scale-radius of the mass profile
(3) a velocity-anisotropy parameter

 M_{200} M(r) concentration, c = r_{200}/r_{-2}

The Physics of Groups, Paris, Dec. 13th 2016

Parameter	NFW+T models	Mean of all models
<i>r</i> ₂₀₀ [Mpc]	$0.85^{+0.16}_{-0.18}$	0.79 ± 0.02
<i>r</i> ₋₂ [Mpc]	$2.1^{+6.5}_{-1.0}$	1.6 ± 0.2
$(\sigma_r/\sigma_\theta)_\infty$	$0.7^{+0.7}_{-0.3}$	0.8 ± 0.1

- NFW is best-fit M(r) model
- Tiret is bets-fit β(r) model

 Uncertainties in best-fit model (filled blue dot)
 ≫variance among different models (other symbols)
 → statistical error dominates

- Low concentration, $c \equiv r_{200}/r_{-2} < 1$
- Isotropic (or tangential) orbits

Andrea Biviano, Trieste

The Physics of Groups, Paris, Dec. 13th 2016

Parameter	NFW+T models	Mean of all models
<i>r</i> ₂₀₀ [Mpc]	$0.85^{+0.16}_{-0.18}$	0.79 ± 0.02
<i>r</i> ₋₂ [Mpc]	$2.1^{+6.5}_{-1.0}$	1.6 ± 0.2
$(\sigma_r/\sigma_\theta)_\infty$	$0.7^{+0.7}_{-0.3}$	0.8 ± 0.1

- MAMPOSSt r₂₀₀ < r₂₀₀^σ
- MAMPOSSt r₂₀₀ ≈ r₂₀₀^C
- Marginally inconsistent with the results from the kinematic analysis of Dietrich, AB, Popesso+09 (dashed line, shaded regions indicating random and random+systematic uncertainties)

Parameter	NFW+T models	Mean of all models
<i>r</i> ₂₀₀ [Mpc]	$0.85^{+0.16}_{-0.18}$	0.79 ± 0.02
<i>r</i> ₋₂ [Mpc]	$2.1^{+6.5}_{-1.0}$	1.6 ± 0.2
$(\sigma_r/\sigma_\theta)_\infty$	$0.7^{+0.7}_{-0.3}$	0.8 ± 0.1

- MAMPOSSt r₂₀₀ < r₂₀₀^σ
- MAMPOSSt r₂₀₀ ≈ r₂₀₀^C
- Marginally inconsistent with the results from the kinematic analysis of Dietrich, AB, Popesso+09 (dashed line, shaded regions indicating random and random+systematic uncertainties)

...and with the results from the weak lensing analysis of same authors (red diamond with error bars)

The Physics of Groups, Paris, Dec. 13th 2016

Parameter	NFW+T models	Mean of all models
<i>r</i> ₂₀₀ [Mpc]	$0.85^{+0.16}_{-0.18}$	0.79 ± 0.02
<i>r</i> ₋₂ [Mpc]	$2.1^{+6.5}_{-1.0}$	1.6 ± 0.2
$(\sigma_r/\sigma_\theta)_\infty$	$0.7^{+0.7}_{-0.3}$	0.8 ± 0.1

M(r) concentration

 theoretical expectation
 for given M,z (from Correa+15)

The Physics of Groups, Paris, Dec. 13th 2016

Parameter	NFW+T models	Mean of all models
<i>r</i> ₂₀₀ [Mpc]	$0.85^{+0.16}_{-0.18}$	0.79 ± 0.02
<i>r</i> ₋₂ [Mpc]	$2.1^{+6.5}_{-1.0}$	1.6 ± 0.2
$(\sigma_r/\sigma_\theta)_\infty$	$0.7^{+0.7}_{-0.3}$	0.8 ± 0.1

Dietrich, AB, Popesso+09 derived r₂₀₀^{WL} from the weak lensing map, using NFW model fitting with fixed c=7 (theoretically motivated)

• Using c=1 we find: $r_{200}^{MAMPOSSt} \approx r_{200}^{WL}$ (gold diamond)

Method	$M_{200} \ [10^{14} M_{\odot}]$	Reference
Lensing	$3.0^{+1.2+0.7}_{-0.8-0.5}$	D09
Virial	$2.7^{+1.1}_{-0.7}\pm1.0$	D09
L_X	$0.9^{+0.2}_{-0.2}$	D09
MAMPOSSt	$0.8^{+0.8}_{-0.7}$	This paper
Caustic $\mathcal{F}_{\beta} = 0.5$	$0.9^{+1.4}_{-0.9}$	This paper
Caustic $\mathcal{F}_{\beta} = 0.7$	$1.5^{+2.4}_{-1.4}$	This paper
Lensing with $c_{200} = 1$	$1.8^{+1.7}_{-0.9}$	This paper

- The new r₂₀₀ determinations (MAMPOSSt, lensing c=1) are in good agreement with r₂₀₀[×] from L_X using the *Rykoff+08* scaling relation (yellow line and shading)
- → A315 no longer X-ray underluminous

The Physics of Groups, Paris, Dec. 13th 2016

→ A315 is a low-mass cluster (8 \times 10¹³ M_☉); this explains its low L_X

- Previous mass estimates were biased high because of:
 - a) complex kinematics structure (unaccounted substructures)
 - b) wrong assumption on M(r) concentration (lensing)

→ A315 is a low-mass cluster (8 \times 10¹³ M_☉); this explains its low L_X

- Previous mass estimates were biased high because of:
 - a) complex kinematics structure (unaccounted substructures)
 - b) wrong assumption on M(r) concentration (lensing)

Can all Abell X-ray Underluminous clusters be explained by a wrong mass estimate caused by line-of-sight, infalling structures (Bower+97)?

The Physics of Groups, Paris, Dec. 13th 2016

→ A315 is a low-mass cluster (8 \times 10¹³ M_☉); this explains its low L_X

- Previous mass estimates were biased high because of:
 - a) complex kinematics structure (unaccounted substructures)
 - b) wrong assumption on M(r) concentration (lensing)

Can all Abell X-ray Underluminous clusters be explained by a wrong mass estimate caused by line-of-sight, infalling structures (Bower+97)?

...the game is not quite over yet...

The Physics of Groups, Paris, Dec. 13th 2016

- Both A315 and A1456 appear to be in a (minor?) merging process (also: tangential orbits)
- → The low-concentration measured for A315 is uncommon (both observationally, e.g. Groener+16, and theoretically, e.g. Correa+15); it could originate from the merging process; could this also lower L_X?

 Planck collaboration 2016: "Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources": some clusters have SZ Y₅₀₀ compatible with their redMaPPer richness λ, but too high for their L_X Are both λ and Y₅₀₀ biased high, or are their X-ray underluminous for their mass?

See also talk by Ewan O'Sullivan: some X-ray groups might remain undetected (mergers, non-CC, AGN-disrupted...)

Need follow-up observations of more candidate X-ray underluminous clusters for the issue to be settled down

Nice score if it was a soccer game, but looks like it's a basketball game!

The Physics of Groups, Paris, Dec. 13th 2016