Groups and clusters in the 3XMM/SDSS Stripe 82 zone

Florence Durret¹, Ali Takey², Amaël Ellien¹, Eman Mahmoud², Isabel Márquez³, Adèle Plat¹, Gamal Bakr Ali²

Institut d'Astrophysique de Paris, Paris, France
National Research Institute of Astronomy and Geophysics, Cairo, Egypt
Instituto de Astrofísica de Andalucía, Granada, Spain

Institut d'astrophysique de Paris

1

Outline

- The 3XMM/SDSS Stripe 82 group and cluster survey
- The group/cluster catalogue
- X-ray properties
- Optical properties
- Discovery of two merging clusters

The SDSS Stripe 82 survey

- Equatorial zone: -50°<RA<60° and |DEC|≤1.25
- Coverage 270 deg²
- 13 x 10⁶ galaxies with photo-z and 10⁵ galaxies with zspec
- 50% completeness at r=23.5

Stripe 82 image

DR12 image

> Systematic search for clusters in the Stripe 82 region: Durret et al. 2015, A&A 578, 79 Now being improved by Florian Sarron

X-ray cluster candidates in the Stripe 82 region

Systematic search for diffuse extended X-ray sources in XMM-Newton archive in the SDSS Stripe 82 zone

- 74 XMM observations
- Surveyed area: 11 deg²
- 120 extended detections, <u>94 cluster candidates</u>

3XMM J001737.3-005240 $(z_{spec} = 0.2141)$

The sample with redshifts

- 51 groups or clusters with spectroscopic redshifts + 3 with photometric redshifts
- 1/3 of them are new systems in X-rays
- 0.05 < z < 1.2
- 10 clusters at z > 0.6

The most distant cluster (z>0.8) 2XMM J083026+524133

Large binocular telescope image + X-ray contours R and z band S82 image + X-ray contours

X-ray properties

Comparison with 2XMMiSDSS

Comparison with XCS

Optical properties of clusters: morphological segregation

• Stripe 82 images retrieved from Fliri & Trujillo at http://www.iac.es/proyecto/stripe82/index.php

- 4 or 9 images combined to reach 1 Mpc radius
- Images analysed with SExtractor after modeling of the PSF flux_{spheroid} and flux_{disk}
- Classification as early type if

 $flux_{spheroid} / (flux_{spheroid} + flux_{disk}) \ge 0.35$

Results after stacking all the clusters:

- The number of early type galaxies stays roughly constant with radius while the number of late type galaxies strongly increases
- The fraction of early-type galaxies decreases and the fraction of late types increases with radius

Galaxy luminosity functions (GLF)

Method:

- Detections on rdeep image
- Galaxy-star separation
- Magnitude measurements in 5 bands (u, g, r, i, z) 5 band galaxy catalogue
- Selection of galaxies along the red sequence for each cluster
- Same selection applied to COSMOS catalogue by Laigle to estimate the background
- Apply k-correction, estimate galaxy counts in absolute magnitude bins
- Fit of every GLF by a Schechter function

Results for stacked clusters in three mass bins

Schechter fit parameters in the four bands g, r, i, z

	$\begin{array}{c} {\rm Low\ mass}\\ (M<7\ 10^{13}\ {\rm M_{\odot}}) \end{array}$	$\begin{array}{l} \mbox{Medium mass} \\ (7 \ 10^{13} \leq M \leq 10^{14} \ {\rm M_{\odot}}) \end{array}$	High mass $(M > 10^{14} M_{\odot})$
Φ_g	311 ± 36	260 ± 25	152 ± 19
M_q^*	-26.00 ± 0.17	-23.60 ± 0.12	-25.60 ± 0.19
α_g	-1.054 ± 0.038	-1.306 ± 0.017	-1.360 ± 0.016
Φ_r	178 ± 106	304 ± 15	413 ± 38
M_r^*	-25.02 ± 1.53	-24.19 ± 0.06	-24.47 ± 0.11
α_r	-1.243 ± 0.051	-1.285 ± 0.010	-1.212 ± 0.020
Φ_i	413 ± 94	363 ± 16	647 ± 36
M_i^*	-23.66 ± 0.23	-24.02 ± 0.04	-23.95 ± 0.06
α_i	-1.099 ± 0.055	-1.240 ± 0.011	-1.159 ± 0.015
Φ_z	377 ± 110	152 ± 19	968 ± 57
M_z^*	-23.95 ± 0.33	-25.60 ± 0.19	-23.86 ± 0.06
α_z	-1.121 ± 0.075	-1.360 ± 0.017	-1.056 ± 0.023

No obvious variation of Schechter parameters with cluster mass

Merging clusters 3XMM J010606.7+004925 (z=0.26)

0.8

The multiple cluster Abell 412 (z=0.11)

Takey, Durret, Ahmed, Ali 2016, A&A 594, 32

Conclusions and perspectives

- More detailed analysis in X-rays
- Galaxy density maps for the whole sample
- Study of the optical properties of the Brightest Cluster Galaxies (internship next spring)

A&A 594, A32 (2016) DOI: 10.1051/0004-6361/201628105 © ESO 2016

The 3XMM/SDSS Stripe 82 Galaxy Cluster Survey

I. Cluster catalogue and discovery of two merging cluster candidates*

A. Takey^{1,2}, F. Durret¹, E. Mahmoud², and G. B. Ali²

- ¹ Sorbonne Universités, UPMC Univ. Paris 6 et CNRS, UMR 7095, Institut d'Astrophysique de Paris (IAP), 98bis Bd Arago, 75014 Paris, France
 - e-mail: takey@iap.fr
- ² National Research Institute of Astronomy and Geophysics (NRIAG), 11421 Helwan, Cairo, Egypt

Received 11 January 2016 / Accepted 17 June 2016

ABSTRACT

sources from the third XMM-Newton serendipitous source catalogue (3XMM-DR5). A cross-correlation of the candidate list that comprises 94 objects with recently published X-ray and optically selected cluster catalogues provided optical confirmations and redshift estimates for about half of the candidate sample. We present a catalogue of X-ray cluster candidates previously known in X-ray and/or optical bands from the matched catalogues or NED. The catalogue consists of 54 systems with redshift measurements in the range of 0.05-1.19 with a median of 0.36. Of these, 45 clusters have spectroscopic confirmations as stated in the matched catalogues. We spectroscopically confirmed another 6 clusters from the available spectroscopic redshifts in the SDSS-DR12. The cluster catalogue includes 17 newly X-ray discovered clusters, while the remainder were detected in previous XMM-Newton and/or ROSAT cluster surveys. Based on the available redshifts and fluxes given in the 3XMM-DR5 catalogue, we estimated the X-ray luminosities and masses for the cluster sample. We also present the list of the remaining X-ray cluster candidates (40 objects) that have no redshift information yet in the literature. Of these candidates, 25 sources are considered as distant cluster candidates beyond a redshift of 0.6. We also searched for galaxy cluster mergers in our cluster sample and found two strong candidates for newly We present a galaxy cluster survey based on XMM-Newton observations that are located in Stripe 82 of the Sloan Digital Sky Survey (SDSS). The survey covers an area of 11.25 deg². The X-ray cluster candidates were selected as serendipitously extended detected discovered cluster mergers at redshifts of 0.11 and 0.26. The X-ray and optical properties of these systems are presented

- The TALANA STATEMENT OF THE TALANA STATEMENT OF THE TALANA STATEMENT OF THE TALANA STATEMENT OF THE TALANA ST		1 M
	Astronomy and Computing	Astronomy and Computing
ELSEVIER	journal homepage: www.elsevier.com/locate/ascom	
Full length article Spectral clustering for of X-ray selected galaxy clu	ptical confirmation and redshift estimation of uster candidates in the SDSS Stripe 82	CrossMark
E. Mahmoud ^{a,b,*} , A. Takey ^{b,c} , A. ^a Egypt-Japan University of Science and Technology (E ^b National Research Institute of Astronomy and Geoph ^c Sorbonne Universités, UPMC Univ. Paris 6 et CNRS, U	. Shoukry ^a E-JUST), 21934 New Borg El-Arab, Alexandria, Egypt tysics (NRIAG), 11421 Helwan, Cairo, Egypt JMR 7095, Institut d'Astrophysique de Paris, 98bis Bd Arago, 75014 Paris, France	
ARTICLE INFO	ABSTRACT	
Article history: Received 7 May 2016 Accepted 2 July 2016 Available online 12 July 2016	We develop a galaxy cluster finding algorithm based on spectral clustering technique to iden counterparts and estimate optical redshifts for X-ray selected cluster candidates. ¹ As an we run our algorithm on a sample of X-ray cluster candidates selected from the third XM serendipitous source catalog (3XMM-DR5) that are located in the Stripe 82 of the Sloan Digital	identify optical an application, XMM-Newton gital Sky Survey
Keywords: X-rays: galaxies: clusters Catalogs Surveys Techniques: photometric Methods: machine learning - spectral clustering	(SDSS). Our method works on galaxies described in the color-magnitude feature space. W examining 45 galaxy clusters with published spectroscopic redshifts in the range of 0.1–0.8 wi of 0.36. As a result, we are able to identify their optical counterparts and estimate their predshifts, which have a typical accuracy of 0.025 and agree with the published ones. Then, we another 40 X-ray cluster candidates (from the same cluster survey) with no redshift inform literature and found that 12 candidates are considered as galaxy clusters in the redshift rang to 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays and conditional theory of 0.76 with a median of 0.57. These systems are newly discovered clusters in X-rays an	e. We begin by 8 with a median eir photometric , we investigate ormation in the ange from 0.29 nd optical data. rights reserved.