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Motivation :

Get a “self-consistent” description from scales of a few 100 pc 
(typical intermediate galactic scales) to less than 0.1 pc, the scale of the dense cores

Minimum ingredients:
 A stratified disc 
 A self-regulated ISM 



Investigating feedback at molecular cloud scales: HII and SN
-SN : uniform medium and MC => dependence on environment 

Investigating their effects at kpc scale: Self-regulated models
-low resolution, setup and caveats
-high resolution, some statistics

Zooming-in: preliminary statistics
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Total momentum injected by a supernova onto the ISM
Uniform Medium

(e.g. Sedov 1959, Cioffi et al. 1988, Blondin et al. 1998)

Sedov Phase

Radiative phase

Iffrig & H 2015

1051 erg

1/50 yr in the MW

First phase:
adiabatic expansion

Second phase:
radiative lost in the shell

Third phase:
Momentum driven phase

Momentum driven phase

Sedov phase:   ri(t) 1.77n1/5E51
4/5t4

3/5



Iffrig & H 2015



Momentum injected in gas above 
various density thresholds as a 
function of time

Iffrig & H 2015

Supernova efficiency depends on their location !
=> Need to know well enough the history of the massive stars
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Column density density

Supernovae regulated ISM (from few 100 pc to 1kpc)
(Slyz et al. 2005, de Avillez & Breitschwerdt 2005,2007, Joung & MacLow 2006, 

Hill et al. 2012, Kim et al. 2011, Hennebelle & Iffrig 2014, Gatto et al. 2014)

External gravitational field (due to stars and DM), multi-phase ISM, self-
gravity, magnetic field
Supernovae explosions (different schemes)

1kpc



The issue of Injection of supernovae in galactic scale simulations

thermal energy and/or momentum are damped in a sphere of 12pc or radii 

Different distributions:

-galactic rate is imposed 
        -no correlation at all with the gas 

-correlation with the density peaks

-each times a sink particle accretes 120 Ms of gas, a supernova explodes
-supernovae are distributed randomly within a sphere of 10 pc around the sink (ref)
-supernovae are distributed randomly within a shell  between 10 and 20 pc (shell)

H & Iffrig 2014



Supernovae (sphere of 16 pc  around the sink)Supernovae (shell of 16 pc around the sink)

Different answers depending on how exactly are the supernovae injected
(see also Gatto et al. 2014)

H & Iffrig 2014



Supernovae (ref)

Supernovae
fix rated 
no spatial correlation

Supernovae (shell)

The results depend a lot on the way supernovae are being introduced….

H & Iffrig 2014



SFR for
various supernovae
schemes

Star formation rate: very sensitive to the supernovae scheme

H & Iffrig 2014



Density profile of the galactic disk and pressure (turbulent, magnetic, thermal)

Density vs z Kinetic pressure vs z

Magnetic pressure vs z Thermal pressure vs z
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High resolution simulations
(B=0, 2.5, 5 and 10 G)

10243

Iffrig&H in prep
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Star formation rate as a function of time
(B=0, 2.5, 5 and 10 G)

Magnetic field does reduce the SFR. For typical values 
this may not be more than a factor of a few.



10243

Clump properties
B=2.5 G, density threshold 50 cm-3: mass spectrum, mass-size



Powerspectra of the velocity field at different altitude for 4 magnetisations (0, 2.5, 5, 10 G)

Compressible modes dominating in the equatorial plane
Compressible mode amplitude quickly decreases with altitude and magnetisation 
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Strategy adopted for the zooming technique

-start with unigrid stratified box regulated by supernovae

 First difficulty : sink particles should not be used (too big when 
zooming)

 Correlate SN with peak density – impose a star formation rate

-want to get proper turbulent fluctuations :  uniform resolution grids
 Refine on concentric cubes with UNIFORM resolution
 Do a few timesteps after each refinement (to let the grid relaxing) and 

load balance

-Can do unigrid refinement up to some levels (typically 14) if one wants to 
cover a sufficiently large regions (of 100 pc)
 Finish the last levels with Jeans refinement (from 14 to 18)

-timesteps very small when feedback is used : far too small when 
refinement is used
 Stop the SN feedback when start refinement, let relax a bit before 

refinement starts

Used 4000 cpu on Curie about 5 MCPUh for that particular run







Soler &
 Hennebelle
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Some statistics of the diffuse gas
 (preliminary) 

Goal: comparison with PLANCK statistics



Extracting the dense cores 

We use the HOP algorithm 

Select cells with density above some thresholds (1000 cc) and at least at level 17

We provide to HOP the density of these cells

We obtain the GROUP (based on local maxima and saddle points)

We do not regroup 



Extracting the dense cores 

0.4 pc

0.4 pc



Some statistics of the dense cores  (preliminary) 

Mass to flux over critical mass to flux ratio distribution 



Some statistics of the dense cores  (preliminary) 

Mass spectrum (all “cores”)
Mass spectrum 
(only supercritical “cores”)



Conclusi
ons

Feedback is not only delivering momentum/energy, it is also when and 
where
Supernovae do not do much when exploding outside MC

Many uncertainties regarding its exact influence and how it should be 
implemented
 hugely difficult: multi-scale and complex stellar physics

Under some favorable assumptions regarding the assumptions for SN, can 
reproduce many properties of the observed ISM (e.g. Larson relations) and 
SFR

Magnetic field certainly reduces the SFR. Are we more magnetized that we 
think ? 

Producing “self-consistent” statistics:
Encouraging results regarding the magnetic field orientation and the core 
mass function
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