Shine bright like a quasar: Feedback from radiatively-driven AGN Winds RUM 2016 Rebekka Bieri

Collaborators: Yohan Dubois, Joakim Rosdahl, Alexander Wagner Joseph Silk, Gary Mamon

Feedback from AGN

Two Main Modes of AGN feedback

Two Main Modes of AGN feedback

Quasar Feedback in Simulations

Heating of the surrounding gas

With thermal input

Modification of the internal energy Increasing of the gas temperature by uniformly distributing the specific energy Similar to: Di Matteo et al., 2005, 2008; Sijacki et al., 2007; Booth & Schaye, 2009; Teyssier et al., 2011

Teyssier et al., 2011

Quasar Feedback in Simulations

Heating of the surrounding gas

With thermal input

Similar to: Di Matteo et al., 2005, 2008; Sijacki et al., 2007; Booth & Schaye, 2009; Teyssier et al., 2011

Modification of the internal energy Increasing of the gas temperature by uniformly distributing the specific energy

Sub-grid models should rely on a number of assumptions regarding the coupling between the radiation and the gas:

- absorption of photons
- optical depth
- mean free paths
- self-shielding

Modelling a Quasar in a Multiphase ISM

- How efficiently do photons couple to gas?
- How does radiation couple gas and drive large-scale winds?
- Which photons are most relevant for driving a wind?

Bieri et al. 2016b; arXiv:1606.06281, accepted for publication in MNRAS

Radiation Hydrodynamics

- RAMSES-RT: Uses moment method to solve radiative transfer in RAMSES (Rosdahl et al. 2013, Rosdahl & Teyssier 2015)
- Solves non-equilibrium evolution of ionisation fractions of HII, HeII, HeIII
- Radiation pressure + diffusion of multi-scattering IR radiation included
- Solar metallicities, assuming all metals are locked in dust
- Dust opacities $\kappa_{D,UV} = 1000 \,\mathrm{g \, cm^{-2}}$ $\kappa_{D,IR} = 10 \quad \mathrm{g \, cm^{-2}}$ $\kappa_{D, IR, opt, UV} = 0 \text{ if } T > 10^5 \text{K}$
- Reduced speed of light approximation $\,c_{
 m red}=0.2c\,$

(Gnedin & Abel 2001)

- no gravity
- no cooling
- no time variability

Emission and propagation of photons and their interaction with the gas via the dust is self-consistently described

Quasar Spectral Energy Distribution

Setting Up a Disc

Log-normal pdf for gas density Kolmogorov-like power spectrum (and different cloud size) Initial conditions from Wagner & Bicknell (2011) Galaxy radius: 1.5 kpc Galaxy height: 0.2 kpc Galaxy mass: 2.1 x 10¹⁰ M_{Sun} 5pc resolution in the galaxy

Realistic representation of a generic turbulent multi-phase interstellar medium (ISM) of a gas-rich high-redshift galaxy in terms of density structure and clumps size

Density Evolution Driven by Radiation

Density Evolution Driven by Radiation

(SINFONI) Spectroscopic observation

Large Velocities & Mass Outflow Rates

- Gas reaches velocities of up to 1000 km/s
- The highest velocity gas shows an anti-correlation with density.
- Mass outflow rates are up to 1000 M_{sun}/yr

How Does Radiation Drive a Wind?

kpc

Le46 bigC

Le46 bigC

Optical Depth and Cloud Destruction

Optical depth

Optical depths are between 10 and 100 depending on cloud size

Optical Depth and Cloud Destruction

- Optical depths are between 10 and 100 depending on cloud size
- Covering fraction depends on cloud size but generally drops quickly

Mechanical Advantage

Mechanical Advantage

 $\eta < 1$ momentum loss due to inhomogeneities in the gas

The non-uniform structure of the ISM and subsequent building of low density channels as well as destruction of central cloud leads to loss of momentum

How Does Radiation Drive a Wind?

medC simulation

• Photoionisation has small but non-negligible effect

- Photoionisation has small but non-negligible effect
- Optical photons give small contribution to the momentum

- Photoionisation has small but non-negligible effect
- Optical photons give small contribution to the momentum
- Through multi-scatterings on the dust, IR radiation imparts many times a momentum L_{group}/c onto the gas

- Photoionisation has small but non-negligible effect
- Optical photons give small contribution to the momentum
- Through multi-scatterings on the dust, IR radiation imparts many times a momentum L_{group}/c onto the gas
- Main contribution to the total momentum from UV+optical comes from reprocessed UV photons into IR

- Photoionisation has small but non-negligible effect
- Optical photons give small contribution to the momentum
- Through multi-scatterings on the dust, IR radiation imparts many times a momentum L_{group}/c onto the gas
- Main contribution to the total momentum from UV+optical comes from reprocessed UV photons into IR

Effect of Reduced Speed of Light

- Rationale: as long as the radiation travels faster then ionisation fronts, the results of RHD simulations are more or less converged with respect to the reduced speed of light
- IR radiation is not photo-ionising —> not obvious whether a reduced speed of light produces converging results, especially when IR trapping becomes important

Effect of Reduced Speed of Light

- Rationale: as long as the radiation travels faster then ionisation fronts, the results of RHD simulations are more or less converged with respect to the reduced speed of light
- IR radiation is not photo-ionising —> not obvious whether a reduced speed of light produces converging results, especially when IR trapping becomes important

Choice of c_{red} has a significant effect on momentum transfer

Effect of Reduced Speed of Light

- Rationale: as long as the radiation travels faster then ionisation fronts, the results of RHD simulations are more or less converged with respect to the reduced speed of light
- IR radiation is not photo-ionising —> not obvious whether a reduced speed of light produces converging results, especially when IR trapping becomes important

Conclusion for Radiation Driven Quasar

- Mechanical advantage is smaller than theoretically inferred (10%)
- Radiation-driven feedback has most effect on galaxies with large clouds
- Radiation manages to drive a radiatively-driven wind mainly because of IR multi-scattering (needs however to be confirmed with more realistic simulations)
 - Be careful with your choice of reduced speed of light!

