Prediction of Gravitational lensing signal through Horizon-AGN light cone

C. Gouin, R. Gavazzi, Y. Dubois and C. Pichon

1. Introduction to Gravitational Lensing

Image : NASA /ESA

Mass recontruction of Abell 222/223 by WL Dietrich and al, 2012

1. Introduction to Gravitational Lensing

 \Rightarrow Strong Lensing probe the internal region of galaxies

 \Rightarrow Weak lensing signal probe the outskirts of galaxies

Euclid space mission

Calibration of GL signal using hydrodynamical cosmological simulation

Image : NASA / ESA, K. Sharon (Tel Aviv) E. Ofek (Caltech)

1. Prediction of GL signal from hydrodynamical cosmological simulation

On small scales

- The slope of the central density profile
 - Cups core problem?
- cross section of strong lensing
 - Is arc abundance changed by baryonic processes ?
- Time delay

Contraint the Hubble constant The distribution of mass along the l.o.s ?

1. Prediction of GL signal from hydrodynamical cosmological simulation

Horizon AGN simulation

Baryonic processes modeled in Horizon AGN Simulation with RAMSES code :

- Gas dynamics, gas cooling/heating
- Star formation
- SN & AGN feedback

Horizon AGN ~ 100 000 galaxies within a box 100 Mpc/h

(See Presentation of Sugata Kaviraj)

Horizon AGN light cone

redshift

Goal : Tracing light ray through the light cone

Example of light cone creation in a box simulation

S.Hilbert and al , 2009

Thin lens theory

Lensing equation :

$$\vec{\beta} = \vec{\theta} - \frac{D_{LS}}{D_s} \vec{\alpha}$$

Lensing potential (2D projected) :

 $\varphi(\vec{\theta}) = \frac{2 D_{LS}}{c^2 D_S D_L} \int d\chi \,\phi_{3D}$

$$\vec{\alpha} = \vec{\nabla}_{\theta} \varphi$$

Matrix amplification :

$$A^{-1} = \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \begin{pmatrix} 1 - \kappa & 0\\ 0 & 1 - \kappa \end{pmatrix} + \begin{pmatrix} -\gamma_1 & -\gamma_2\\ -\gamma_2 & \gamma_1 \end{pmatrix}$$

thin lens theory

Lensing quantities :

Convergence :
$$\kappa = \frac{\Sigma}{\Sigma_{crit}} = \frac{1}{2} \Delta \varphi$$

Shear real :
$$\gamma_1 = \frac{1}{2} \left(\frac{\partial^2 \varphi}{\partial \theta_1^2} - \frac{\partial^2 \varphi}{\partial \theta_2^2} \right)$$

Shear imaginary : $\gamma_2 = \frac{\partial^2 \varphi}{\partial \theta_1 \partial \theta_2}$

Resolution of differential lens equation in Fourier space

Differential equation

 $\kappa = \frac{1}{2}\Delta\varphi$ $\gamma_1 = \frac{1}{2} \left(\frac{\partial^2 \varphi}{\partial \theta_1^2} - \frac{\partial^2 \varphi}{\partial \theta_2^2} \right)$ $\gamma_1 = \frac{1}{2} \left(\frac{\partial^2 \varphi}{\partial \theta_1^2} - \frac{\partial^2 \varphi}{\partial \theta_2^2} \right)$ $\vec{\alpha} = \vec{\nabla}_{\theta} \varphi$

Fourier space

$$\hat{\psi} = -2 \; \frac{\hat{\kappa}}{(k_1 + k_2)^2}$$

$$\widehat{\gamma_1} = -\frac{1}{2}(k_1^2 - k_2^2)\widehat{\psi}$$

$$\widehat{\gamma_2} = -\,k_1k_2\,\widehat{\psi}$$

$$\widehat{\alpha_1} = -i \, k_1 \, \widehat{\psi}$$
$$\widehat{\alpha_2} = -i \, k_2 \, \widehat{\psi}$$

2. Ray tracing through Horizon AGN light cone Multiple lens planes

Lens equation applies on each of the multiple lens planes :

Source position :

$$\overrightarrow{\beta_k} = \overrightarrow{\theta} - \sum_{i=1}^{k-1} \frac{D_{ik} D_s}{D_k D_{is}} \overrightarrow{\alpha_i}(\overrightarrow{\beta_i})$$

Equation for the jacobian of the lens mapping for the k-th lens plane:

$$A^{k} = \frac{\partial \overrightarrow{\beta_{k}}}{\partial \overrightarrow{\theta}} = I - \sum_{i=1}^{k-1} \frac{D_{ik} D_{s}}{D_{k} D_{is}} \frac{\partial \overrightarrow{\beta_{i}}}{\partial \overrightarrow{\theta}} \frac{\partial \overrightarrow{\alpha_{i}}}{\partial \overrightarrow{\beta_{i}}}$$

Multiple lens planes

Credit to S. Hilbert and al, 2009

iterative method : Much less memory-demanding (store 3 planes, instead of several tens or hundreds)

Recurrence relation for source position :

$$\beta^k \propto \beta^{k-1}, \beta^{k-2}, \alpha^{k-1}$$

Recurence relation for amplification matrix :

2. Lensing signal from Horizon AGN light cone Linking RAMSES accelerations with deflections refinements Acceleration field are sample by particles : $\vec{a} \rightarrow \vec{F_a} \rightarrow \vec{\nabla} \phi$ χ

And $\vec{\alpha} = \frac{2 D_{LS}}{c^2 D_L} \int \vec{\nabla}_{\perp} \phi \, d\chi$ (integrate along l.o.s)

Using the gas component :

- Gas particles follow the RAMSES grid
- Given the size of RAMSES cells : $\sigma = \left(\frac{m_{gas}}{\rho_{gas}}\right)^{1/3}$

RAY-RAMSES, A. Barreira and al, 2016

rav A

ˈray B

Fine

step

Fine

step

2. Linking RAMSES accelerations with deflections

Adaptative Gaussian kernel 2D (xy direction)

Each gas particle is defined by $\sigma_p, \vec{x_p}$, and is treated as truncated gaussian kernels

$$f(x) = e^{\frac{(x-x_p)^2}{2\sigma_p^2}} \text{ for } \frac{x_{pixel} - x_{part}}{\sigma_p} \le 4$$

With pixel weight

$$F_{x} = \int_{x_pixel_min}^{x_pixel_max} e^{\frac{(x-x_p)^2}{2\sigma_p^2}} dx$$

Along the l.o.s (z direction) :

 $F_z \propto \sigma_p$

Tabulation of the erf function (time consuming)

Linking RAMSES accelerations with deflections

Recontructed convergence from the deflection (\propto *acceleration*)

$$\overrightarrow{\nabla}$$
. $\overrightarrow{\alpha} = 2 \kappa$

artefact problems :

- Integration of acceleration along the RAMSES grid seems wrong

work in process...

Using the projected mass Identify the contribution of Differents components

Convergence map κ by projected DM particles

- Redshift of source plane $z_s \sim 3$
- Propagation light ray
- Angular resolution : $\Delta \theta = 1 \ arcsec$
- 16 lightcone slices = 1 lens plane From $z \sim 0$ to $z \sim 3$: 1064 lens planes
- DM particles only with Cloud In Cell

^{2,25 °}

Using the projected mass Classical approach

Lensing quantities

convergence к

shear γ_1

shear γ_2

deflection α_2

defection α_1

Test : comparaison of the propagation of light ray with Born approximation

Born approximation

 Summation of mass contribution along a undistrubed path

(ignore deviation of light path at each lens plane)

Comparaison of the propagation of light ray / Born approximation Born approximation is appropriate at large scale but not adapted to SL at small scale

Short term goal

Adding gravitational lensing signal on mock observation of galaxies (S. Kaviraj and al, 2016)

Mock image ©LaigleC

Lensed Mock image by an arbitrary lens

Thank you for your attention

2. Ray tracing through Horizon AGN light cone From a regular grid image to the source position : $\vec{\beta} = \vec{\theta} - \vec{\alpha}$

credit to LensTools 0.4.8.4

Details on recursive relation

Lens equation apply on the multiple lens planes approximation :

$$\overrightarrow{\theta_j} = \overrightarrow{\theta_1} - \sum \frac{D_{ij} D_s}{D_j D_{is}} \ \overrightarrow{\alpha_i}$$

Recursion relation :

$$A^{k}(\vec{\theta}) = I - \sum_{i=1}^{k-1} \frac{D_{ik} D_{s}}{D_{k} D_{is}} A^{i} U^{i}$$

$$A_i = \frac{\partial \overline{\beta_i}}{\partial \overline{\theta_1}} and U^i = \frac{\partial \overline{\alpha_i}}{\partial \overline{\beta_i}}$$

The number of sub-haloes is it reduced by the presence of baryons? (Guilia Despali & Simona Vegetti, 2016)

- Investigate EAGLE and ILLUSTRIS simulation / concentrate on ETGs
- Especially at low mass ($\leq 10^{10} Mo/h$), by different amounts depending on the model
- They attempt to predict the DM fraction in subhaloes and the slope of mass function α

Strong lensing details

Study of substructure via : The relative flux of multiply imaged quasar Their effect on surface brightness of einstein rings & lensed arc

Euclid

Time delays

SL : measured time delay between the multiple images & models of mass distribution \rightarrow determination of time delay distance \rightarrow cosmological parameters

Excess time :
$$t(\theta, \beta) = \frac{D_{\Delta t}}{c} \left(\frac{(\theta - \beta)^2}{2} - \psi(\theta) \right)$$
 with $D_{\Delta t}$ time delay distance

Time delay distance : $D_{\Delta t} = (1 + z_d) \frac{D_d D_s}{D_{ds}}$ Time delay $\Delta t_{ij} = t(\theta_i, \beta) - t(\theta_j, \beta) = \frac{D_{\Delta t}}{c} \left(\frac{(\theta_i - \beta)^2}{2} - \psi_i(\theta_i) - \frac{(\theta_j - \beta)^2}{2} - \psi_j(\theta_j) \right)$ Image configuration+morphology $\Rightarrow \Sigma, \psi$ + source vary in time $\Delta t \Rightarrow$ obtaint $D_{\Delta t}$ Contraint cosmological parameter by distance redshift test $D_{\Delta t} \propto \frac{1}{H_0}$

Time delay

« Lens galaxies in Illustris simulation : power law & the bias of Hubble constant from time delay » Xu and al 2015

The total density profile in central region is usualy described by Pow law $\rho \propto r^{-\gamma'}$ Radial scale : transition from dominance of BM to DM PL affect the product of time delay \rightarrow bias the determination of Ho

They study dynamic and SL on simulated galaxies (Illustris)

Find : the bias on Ho introduce by PL assumption can reach 20-50 %

Testing the CDM Paradigm on Small Non Linear Scales

- density profile of DM halo fitting by universal NFW profile
 - Cusp-core problem

Missing satellites

 ρ (M_☉/kpc³)
 CDM model clearly
 over-predicts the number of
 substructure in the Milky Way

