The gas cosmological power spectrum in RAMSES

Owain Snaith

Changbom Park Juhan Kim Jihye Shin Benjamin L'Huillier (KASI)

Korean Institute for Advanced Study

The cosmological power spectrum

 Measure of the contract of the density field on different scales

• Fourier transform on a uniform grid

• Map RAMSES output onto a regular grid (for dark matter and gas)

Initial exploration

- Cosmological simulations include dark matter & baryons
- Matter power spectrum evolves predictably (e.g HALOFIT+, Smith et al. 2003, Takahashi et al. 2012) even in the non-linear

Based on empirical fitting from simulations

Breaks down at high resolution

Tuned using N-body only simulations

Importance of initial resolution (ICs): Which resolution matters?

- **Experiment:** Using ICs with difference coarse grids (initial resolution)
 - set RAMSES to resolve in the same final resolution (max level)
- We can set the maximum refinement level
 - RAMSES only refines when it needs to (i.e. when the number of particles in a cell exceeds a threshold).

Simulation

- CAMB (Ade et al. 2015) initial conditions
- Uses MUSIC (Hahn et al. 2012)
- Plank cosmology (Lewis et al. 1999)
- Quasi-Lagrangian refinement

Initial exploration

- Three box sizes:
 - 512h⁻¹ Mpc, 128h⁻¹ Mpc, 32h⁻¹ Mpc
- Set the same levelmax = 9 in each case
- Use different simulation boxes to probe different resolutions
- •
- Also run ICs with missing high resolution modes
 - All ICs interpolated from the levelmin=9 ICs)

- Calculate P(k) on 512³ grid
- Power spectra similar just as we'd hope
- Some differences on small scales

Initial power spectra for dark matter and gas

- For the dark matter:
 - Good match between different volumes
 - Similar results at different resolutions
- For the gas:
 - Low resolution shows excess at low resolution
 - No-AMR case shows reasonable fit.

- In the largest box increasing the IC resolution results in convergence towards the Lmin=9 (no-AMR) case
- On smaller scales there is a distinct separation

³ ICs

- For the dark matter:
 - Good match between different volumes
 - Similar results at different resolutions
- For the gas:
 - Low resolution shows excess at low resolution
 - No-AMR case shows reasonable fit.

- At z=0 the dark matter profiles are similar
- No strong effect due to oversmoothing (e.g. O'Shae et al. 2005)
- Converge to 512^3 on small scales

- From the 32 Mpc box \rightarrow
- With AMR cases match
- Diverge from the no-AMR case by a factor of 10
- Gas matches DM in AMR case
- Origin of discrepancy?

- Evolution
 - Pick certain k values and see how they evolve through time
 - When does the difference between AMR and non-AMR manifest?

- For the no-AMR simulation in the 32h-1 Mpc box
- Well behaved evolution at different scales
- On small scales maximum power is at 4 Gyr

- Evolution
 - Compare the Lmax=6 wit the no-AMR case
 - Grey lines show when refinement occurs
 - Shade region is the difference between the AMR and non-AMR case

Evolution

- When refinement occurs the gas distribution is strongly affected
- The last refinement
 'kicks' the power
 spectrum away from the
 non-AMR case
- Earlier refinement kicks the power spectrum towards the non-AMR case

Cause

- Cooling!
- Refinement based on physical units so refines as time advances
- Causes increase in density
- Density = cooling
- Need feedback etc. to mitigate this or improved cooling

Conclusions

• Gas and dark matter power spectra are different in the non-AMR case

• Similar in the with-AMR case

Gas sensitive to refinement strategy & cooling