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We describe brie
y a new method, allowing to perform a joint and self-consistent perturbative
analysis of Sunyaev-Zel'dovich and gravitational weak lensing observations, and to deduce from
it an X-ray brightness prediction.

1 Introduction

Clusters of galaxies are the largest gravitationally bound structures in the Universe and a nat-
ural probe of cosmological scenarii of structure formation. Cluster surveys constitute now a
wide observational database covering a broad wavelength range, which permit to investigate
each component (dark matter (DM), intra-cluster medium (ICM), stellar content (galaxies)) in
details. However, a joint analysis of various types of data is still a subtle task. In particular,
although recent spectacular progresses in weak lensing6;1 (WL) and Sunyaev-Zel'dovich8;9;2 (SZ)
observational techniques entail a new look on DM and ICM in clusters, the co-analysis methods
of this data set are still in their infancy.
Since it is promising for both the understanding of the physical interplay of the ICM and DM
and its cosmological implications, several groups have tackled this task 10;7 (Castander, Grego
and Holder in this proceedings). In this poster, we present a new method which uses simultane-
ously WL and SZ data to perform a true co-analysis. Our approach provides X-ray predictions
and permits to test very general physical hypothesis about the gas (hydrostatic equilibrium,
global thermodynamic equilibrium).
Section 2 brie
y describes the principle. Details and discussion are in sections 3 and 4 respec-
tively.

2 General principles

Observations only provide 2 � D projected quantities (e.g. gravitational potential, gas pres-
sion,. . . ). They must be related to physical processes via 3 � D equations (e.g. hydrostatic
equilibrium, equation of state) which have no convenient equivalents for projected 2�D quan-
tities. In particular, projection along the line of sight does not provide an equation of state
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Figure 1: Images of the SZ e�ect observed towards four galaxy clusters with various redshifts. The contours
correspond to 1.5 to 5 times the noise level. Data taken with the low-noise cm-wave receiver installed on the

OVRO and BIMA mm-wave interferometric arrays 4.

or an hydrostatic equilibrium equation relating projected quantities. Therefore, if we want to
compare WL, SZ and X-ray data, we have to deproject, explicitly or not, the relevant physical
quantities (Pg; Tg; �g. . . where g stands henceforth for the gas). This can be done only by using
strong assumptions : either by using parametric models (e.g. a � model) or by assuming a mere
geometrical hypothesis, a parametric model usually encompassing a geometrical assumption.
Since our motivation is to use WL and SZ images (see �g. 1), we choose the geometric approach
in order to use as general physical grounds as possible and to avoid theoretical biases as much
as possible 5.

Our basic idea is the following. The quasi-circular (ellipsoidal) shapes of y-maps in SZ images
and projected gravitational potentials in WL data obtained for some clusters result of an intrinsic
quasi-sphericity (spheroidality) of the 3�D cluster structure (see �g. 1 for an illustration). The
deviation to perfect symmetry is then considered as a perturbation which can be expressed by
perturbing linearly the original symmetric model (which we know how to deproject). Then, a
self-consistent inversion procedure allows us to infer, from observations, a set of complementary
projected thermodynamical quantities, namely gas density and gas temperature. For both of
them, we deduce zeroth order perfectly symmetrical (spherical or spheroidal) terms and �rst
order (non symmetrical) corrections. By relating the properties of the gas and the gravitational
potential we can then predict the X-ray luminosity map to �rst order.

3 Method

3.1 Hypothesis

Let us �rst assume that SZ and WL observations are described respectively by a y- and �-
function, which denote the amplitude of the measured SZ e�ect and the reconstructed gravi-
tational potential. (R;') are polar coordinates in the image plane, and 0 and 1 suÆxes mark
respectively zeroth order terms (perfectly symmetrical) and �rst order corrections (non sym-
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Figure 2: We represent schematically in (a) an image corresponding to our hypothesis. The full line corresponds
to the perfectly circular 2 � D term, e.g. �DM;0, and the dashed line to the �rst perturbative correction to it,
e.g. �DM;1m('), �' represents the observed angular extent. In (b) we represent a schematic slice in the 3 �D

potential responsible for this image. This slice has been performed along the dash-two-dotted plane indicated on
�gure (a). Here again, the full line corresponds to the perfectly circular 3�D term, e.g. �DM;0, and the dashed
line to the �rst perturbative correction to it, e.g. �DM;1f(�; '). The line of sight direction is indicated by the

full thin line.

metrical):

y(R;') = y0(R) + "y1(R) m(')

�(R;') = �0(R) + "�1(R) n(') :

In this illustrative development we will deal only with the spherical model, but the spheroidal
case can be treated in a similar way, provided it is properly parametrised. We then assume
that this is representative from an intrinsic 3�D linearly perturbed spherical symmetry, whose
perturbations can be separated in an angular and a radial part. Consequently the gas pressure
Pg, the gravitational potential �DM (which we assume to be only due to the dark matter), the
gas density �g and the gas temperature Tg might be written as:

Pg(r; �; ') = Pg;0(r) + "Pg;1(r)f(�; ')

�DM(r; �; ') = �DM;0(r) + "�DM;1(r)h(�; ')

�g(r; �; ') = �g;0(r) + "�g;1(r)g(�; ')

Tg(r; �; ') = Tg;0(r) + "Tg;1(r)k(�; ') :

Assuming furthermore the hydrostatic equilibrium, the equality of the ionic and electronic

temperature and the validity of the usual gas equation of state one can easily show that without
restrictions:

f(�; ') = h(�; ') = g(�; ') = k(�; ') :

At this point, we can express SZ and WL observations, which provide the projected gas
pressure and a projected gravitational potential. If � � �T

mec2
then:

y(R;') = �

Z
Pg;0(r)dl + "�

Z
Pg;1(r)f(�; ')dl

� y0(R) + "y1(R)m(')

�DM (R;') =

Z
�DM;0(r)dl + "

Z
�DM;1(r)f(�; ')dl

� �0(R) + "�1(R)m(') :



The crucial point now is to �nd how one can deduce from these observations zeroth order
and �rst order maps. Let us analyze, for instance, the projected gas density that we note:

Dg(R;') =

Z
�g;0(r)dl + "

Z
�g;1(r)f(�; ')dl

� Dg;0(R) +Dg;1(R;') :

3.2 Zeroth order term

Had we the knowledge of y0(R) and �0(R), we could deproject them easily by use of the standard
Abel's transform to get Pg;0(r) and �DM;0(r). Then, expressing to �rst order in " the hydrostatic
equilibrium equation:

P 0

g;0(r) = ��g;0(r)�
0

DM;0(r) ;

we would get easily �g;0(r) and thus Dg;0(R) in terms of P 0

g;0(r) and �0

DM;0(r).
To gain access to these terms y0(R) and �0(R), we can just average over a succession of annulus
the observed y and � maps. We circularize this way the observed image (the amplitude of the
averaged �rst order terms is negligible).

3.3 First order term

In order to compute a �rst order correction term to the previous one, namely Dg;1(R;') =R
�g;1(r)f(�; ')dl, we express the hydrostatic equilibrium equation to second order in " :

�0

g;0(r)�DM;1(r) = �g;1(r)�
0

DM;0(r) ;

which leads to
R
�g;1(r)f(�; ')dl =

R �0

g;0(r)

�0

DM;0
(r) �DM;1(r)f(�; ')dl ; which can be approximated

the following :

Z
�g;1(r)f(�; ')dl '
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(�DM;1(R;') � �0(R)) ;

where (f(r))R denotes the values of f at the maximal radius r observed at R. The validity of
this approximation is discussed in more details and numerically demonstrated somewhere else 3.
It has the obvious advantage to express the correction term to the zeroth order projected gas
density in terms of the observed �1(R) �rst order terms and zeroth order order pro�les derived
above. Note that we choose to express this correction in terms of WL data but, using the
equation of state we could have expressed it identically in terms of the SZ data. This last step
is crucial to our method since we relate in this way the non symmetric part of various quantities.

Similarly, we can compute a second order map of projected gas temperature:

�g(R;') =

Z
Tg;0(r) dl + "

Z
Tg;1(r)f(�; ')dl

� �g;0(R) + �g;1(R;')



3.4 Predicted X-ray surface brightness map

The joint use of SZ and WL data produces all the physical quantities regarding the dynamical
and thermodynamical stage of the cluster. So, we can in principle recover its X-ray properties
as well. Assuming a given X emission model, the surface brightness is

bX(E) =
1

4�(1 + z)3

Z
n2e�(E; Te) dl :

Hence we have

bX(E) /

Z
n2eTe dl

/

Z
�2gTg dl

/

Z
�2g;0Tg;0dl + "

Z
(
2

�
Pg;0�g;1 + �2g;0Tg;1)f(�; ')dl

If we thus use the maps derived previously we can therefore predict this quantity and compare
it with X-ray surface brightness maps.

4 Discussion

Throughout this work we relied on very general physical hypothesis (hydrostatic equilibrium,
equation of state) and a more geometrical hypothesis, namely a linear perturbation description.
Since the second one constitutes a mere descriptive assumption, whose validity is demonstrated
in view of observations, and since we worked in a fully self-consistent manner, our method brings
a test of the �rst general physical hypothesis.
The numerical quali�cation of our hypothesis is under progress and will be soon presented3. More
than a discussion of the method, we will as well properly discuss noise issues and systematics.
This work should constitute a �rst step towards a full deprojection which will be presented
elsewhere.
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