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We consider a sample of about 50 distant galaxy clusters at z > 0:15 (< z >� 0:3), each
cluster having at least 10 galaxies with available redshift in the literature. We select member
galaxies, analyze the velocity dispersion pro�les, and evaluate in a homogeneous way cluster
velocity dispersions and virial masses. We apply the same procedures already recently applied
on a sample of nearby clusters (z < 0:15) in order to properly analyze the possible dynamical
evolution of galaxy clusters. We do not �nd any signi�cant di�erence between nearby and
distant clusters. In particular, we consider the galaxy spatial distribution, the shape of the
velocity dispersion pro�le, and the relations between velocity dispersion and X{ray luminosity
and temperature. Our results imply little dynamical evolution in the range of redshift spanned
by our cluster sample, and suggest that the typical redshift of cluster formation is higher than
that of the sample we analyze.

1 Introduction

The knowledge of the properties of galaxy clusters plays an important role in the study of large
scale structure formation. In particular, one can use their number density as a function of their
mass ("mass function") to constrain cosmological parameters. Several recent works attempt
to estimate the value of the matter density parameter 
m from the evolution of cluster mass
function (e.g., Carlberg et al. 1; Borgani et al. 2).

However, the estimate of cluster masses is not an easy task. Both the virial theorem applied
to positions and velocities of cluster member galaxies and the dynamical analysis of hot X-ray
emitting gas assume that clusters are systems in dynamical equilibrium, while the mass estimates
derived from gravitational lensing phenomena require a good knowledge of cluster geometry.

As for the analysis of the internal dynamics of nearby clusters (at redshift z �< 0:15), recent
conclusions are based on very large samples (Fadda et al. 3; Mazure et al. 4; Girardi et al. 5).
In particular, Girardi et al. 5 showed that virial masses based on member galaxies are quite
consistent with those obtained from X-ray analysis suggesting that most clusters are not very
far from dynamical equilibrium.

As for distant clusters, most results come from the analysis of the 16 clusters at intermediate
redshifts, 0:18 < z < 0:55 of CNOC (Canadian Network for Observational Cosmology; Yee et

al. 6) which represents a remarkably homogeneous sample. In particular, as found in nearby
clusters, Lewis et al. 7 claim for consistency between masses coming from optical and X{ray



data. However, the diÆculties of obtaining many redshifts in distant clusters have prevented
from building larger samples. Rather, several works, concerning one or a small number of
clusters, and using di�erent techniques of analysis, can be found in the literature.

The availability of a variety of techniques, already applied to nearby clusters, suggests their
application to distant clusters. We thus ensure the homogeneity of our results over a large range
of cosmological distances. A homogeneous analysis is in fact fundamental for the understanding
of the evolution of cluster properties. We present the preliminary results of our analysis of a
sample of about 50 clusters with z > 0:15 where we use the same techniques already used by
Girardi et al. 5 (cf. also Fadda et al. 3) on a sample of 170 nearby clusters (at z < 0:15, data
from ENACS { ESO Nearby Abell Cluster Survey, Katgert et al. 8 { and other literature).

Unless otherwise stated, we give errors at the 68% con�dence level (hereafter c.l.). A Hubble
constant of 100 h km s�1 Mpc�1 and a deceleration parameter of q0 = 0:5 are used throughout.

2 The Data Sample

We analyze a sample of 51 distant galaxy clusters (z > 0:15, < z >= 0:3), each cluster having
at least 10 galaxies with available redshift in the literature, for a total of � 3500 galaxies. The
sample is a compilation of published data (cf. Girardi & Mezzetti in preparation for the complete
reference list).

In order to select member galaxies, we apply the same procedure as Girardi et al. 5 (cf. also
Fadda et al. 3). First, we use the adaptive kernel technique by Pisani 9 as described by Girardi
et al. 10 to �nd the signi�cant peaks in velocity distributions. Then, we use the combination of
position and velocity information to identify possible interlopers in the above-detected systems.
We apply the procedure of the \shifting gapper", i.e. we apply the �xed gap method to a bin
shifting along the distance from the cluster center (cf. Fadda et al. 3).

Finally, we reject galaxies which show strong emission lines. In fact, there are evidences
that emission line galaxies enhance the observed velocity dispersion, �v, suggesting that these
galaxies are not in dynamical equilibrium within the cluster (e.g., Biviano et al. 11).

We �nd that 45 cluster �elds show only one peak in their velocity distribution, and three
�elds show two separable peaks, for a total of 51 well separated systems. The other three cluster
�elds show two strongly superimposed peaks which suggest that their dynamics is strongly
uncertain. In the following analyses we consider only the 51 well separated systems. These 51
systems are those used in the comparison with nearby clusters (160 well de�ned systems, cf.
Girardi et al. 5).

3 Internal Dynamics

We estimate the \robust" velocity dispersion line{of{sight, �v , by using the biweight and the
gapper estimators when the galaxy number is larger and smaller than 15, respectively (cf. RO-
STAT routines { see Beers et al. 12), and applying the relativistic correction and the usual
correction for velocity errors (Danese et al. 13).

Following Fadda et al.3 (cf. also Girardi et al.10) we analyze the \integral" velocity dispersion
pro�le (hereafter VDP), where the dispersion at a given (projected) radius is evaluated by using
all the galaxies within that radius, i.e. �v(< R). The VDP allows to check the robustness of
�v estimate. In particular, although the presence of velocity anisotropies can strongly inuence
the value of �v computed for the central cluster region, it does not a�ect the value of the �v
computed for the whole cluster (e.g., Merritt 14). The VDPs of nearby clusters show strongly
increasing or decreasing behaviors in the central cluster regions, but they are attening out in
the external regions (beyond �1 h�1Mpc, cf. also den Hartog & Katgert 15) suggesting that
in such regions they are no longer a�ected by velocity anisotropies. Thus, while the �v-values



Figure 1: Integrated line{of{sight velocity dispersion pro�les �v(< R), where the dispersion at a given (projected)
radius from the cluster center is estimated by considering all galaxies within that radius. The bootstrap error
bands at the 68% c.l. are shown. The horizontal lines represent X{ray temperature with the respective errors
transformed in �v imposing �spec = 1 (cf. x 4). The vertical faint line indicates the virialized region within Rvir.



computed for the central cluster region could be a very poor estimate of the depth of cluster
potential wells, one can reasonably adopt the �v value computed by taking all the galaxies within
the radius at which the VDP becomes roughly constant.

As for the distant clusters we analyze, when the data are good enough, the VDPs show a
behavior similar to that of nearby clusters (cf. VDPs for 24 out of 51 clusters in Figure 1). Un-
fortunately, distant clusters su�er for the poor sampling, and also for the small spatial extension
of the sampled cluster region. Indeed, the strongly decreasing VDP in the external sampled
regions of some clusters (cf. AS506 in Figure 1) suggests that the correct estimates of velocity
dispersions could be smaller than those, �v , we can estimate with present data; therefore, in
these cases, �v should be better interpreted as an upper limit. In other cases, when the member
galaxies are too few, the analysis of VDPs does not allow any conclusion.

After �xing the cosmological background, the theory of a spherical model for nonlinear
collapse allows to recover the value of the radius of virialization, Rvir, within which the cluster
can considered not far from a status of dynamical equilibrium. For nearby clusters Girardi et
al.5 give a �rst roughly estimate of Rvir � 0:002 ��v (km

�1s h�1Mpc). A following re{estimate
of Girardi et al. 16 suggests rather a scaling factor of 0.0017. Since we �nd that distant clusters
have a galaxy distribution similar to that of nearby ones (see in the following), we adopt here the
same scaling relation with �v : i.e. Rvir � 0:0017 � �v=(1 + z)3=2 (km�1s h�1Mpc) introducing
only the scaling with redshift (cf. also Carlberg et al. 17 for a similar relation).

We analyze galaxy distribution in a similar way to that used by Girardi et al. 5, i.e. by
�tting the galaxy surface density of each cluster to a King distribution with a variable exponent
(hereafter referred to as a \King-like" pro�le, cf. Girardi et al. 18): �(R) = �0=(1 + (R=Rc)

2)�,
where Rc is the core radius and � is the parameter which describes the galaxy distribution
in external regions. This surface density pro�le corresponds to a galaxy volume-density �(r) /
r�(2�+1) for r >> RC . We perform the �t through the Maximum Likelihood technique, allowing
RC and � to vary from 0.01 to 1 h�1Mpc and from 0.5 to 1.5, respectively. We perform the
�t within the circular cluster region, of radius Rmax;c, all contained within the sampled cluster
region. We consider only the 30 clusters with at least ten member galaxies within Rmax;c and
we verify our results on a subsample of 13 clusters with Rmax;c=Rvir > 0:5.

The median value of �, with the respective errors at the 90% c.l., is = 0:63+0:08
�0:08. This value

agrees with � = 0:70+0:08
�0:03 found for nearby clusters, and corresponds to a �fit;gal � 0:8, i.e. to

a volume galaxy{density � / r�2:4. After �xing � = 0:7, we again �t the galaxy distribution
of each cluster, obtaining a median value of Rc = 0:045+0:005

�0:015 h
�1Mpc . Thus, in our cluster

sample, the typical value of Rc (and Rvir=Rc � 20) is again in agreement with that found in
nearby clusters where Rc = 0:05�0:01 h�1Mpc. Hereafter, we assume the above King{modi�ed
distribution, with the same parameters of nearby clusters, i.e. � = 0:7 and Rc = 0:05 h�1Mpc,
for all clusters of our sample.

The standard methods used to estimate the cluster mass from member galaxies require that
galaxies are in equilibrium within the cluster potential. The cluster mass is then recovered from
the knowledge of positions and velocities of the same population of galaxies which are taken as
tracers of the cluster potential.

Assuming that clusters are spherical, non rotating systems, and that the internal mass
distribution follows galaxy distribution, cluster masses can be computed throughout the virial
theorem (e.g., Limber & Mathews 19; The & White 20) as:

M = MV � C =
3�

2
�
�2vRPV

G
� C; (1)

where the projected virial radius, RPV = N(N�1)=(�i>jR
�1
ij ), describes the galaxy distribution

and is computed from projected mutual galaxy distances, Rij; C is the surface term correction
to the standard virial mass MV and it is due to the fact that the system is not entirely enclosed



Figure 2: The (normalized) line{of{sight velocity dispersion, �v(R), as a function of the (normalized) projected
distance from the cluster center. The points represent data combined from all clusters and binned in equispatial
intervals. We give the robust estimates of velocity dispersion and the respective bootstrap errors. We give the
results for distant clusters (open circles) and for nearby clusters taken from Girardi et al.5 (�lled circles). The
solid and dotted line represent the models for isotropic and moderate radial orbits of galaxies, respectively.

in the observational sample (cf. also Carlberg et al. 21; Girardi et al. 5).

Following Girardi et al. 5 we want to estimate cluster masses contained within the radius
of virialization, Rvir. In fact, clusters cannot be assumed in dynamical equilibrium outside
Rvir and considering small cluster region leads to unreliable measure of the potential (�v could
be strongly a�ected by velocity anisotropies) and of the surface term correction (Koranyi &
Geller 22).

Unfortunately, only few distant clusters are sampled out to Rvir. As for �v, the above
analysis of the VDP give indications about its reliability, i.e. VDPs which are at in the external
cluster regions will give reliable estimates of �v . As for RPV , which describes the galaxy spatial
distribution, it can be recovered in an alternative theoretical way from the knowledge of the
parameters of the King{like distribution (Girardi et al. 18; see also Girardi et al. 5 for a simple
analytical approximation in the case of � = 0:7 and Rc=Rvir = 0:05). One can compute RPV

at each cluster radius and, in particular, we compute RPV at Rvir, which is needed in the
computation of the mass within Rvir.

The computation of the C correction at the boundary radius, here Rvir, is given in eq. 14
of Girardi et al. 5 and requires the knowledge of the velocity anisotropy of galaxy orbits.

Having assumed that in clusters the mass distribution follows the galaxy distribution, one can
use the Jeans equation to estimate velocity anisotropies from the data, i.e. from the (di�erential)
pro�le of the line{of{sight velocity dispersion, �v(R). We compute the observational �v(R)
by combining together the galaxies of all clusters, i.e. by normalizing distances to Rvir and
velocities, relative to the mean cluster velocity, to the observed global velocity dispersion �v.
For nearby clusters the observational pro�le is well described by a theoretical pro�le obtained



Figure 3: LX;bol{�v relation for distant (open circles) and nearby clusters (�lled circles). For the distant clusters,
the circle size decreases with the number of galaxies used to estimate �v: the smallest, the intermediate, and the
largest circles indicate Nm � 30, 10 � Nm < 30, and Nm < 10, respectively. For the nearby clusters we show
results as reported by Borgani et al.2, all having �v estimated at least with 30 galaxy redshifts (Girardi et al.5)
and also belonging to the X{ray Brightest Abell{like Cluster survey (Ebeling et al.24). The three solid lines are
direct, inverse, and bisecting linear regression for the distant clusters (obtained rejecting the point on the left).

The dashed line is the bisecting linear regression for the nearby clusters as computed by Borgani et al.2.

by the Jeans equation, assuming that velocities are isotropic, i.e. that the tangential and radial
components of velocity dispersion are equal (i.e., the velocity anisotropy parameter A = 1 �
�2� (r)=�

2
r(r) = 0). For distant clusters this model is less satisfactory (Figure 2), but cannot be

rejected being acceptable at the � 15% c.l. (according to the �2 probability).
In order to give C{corrections more appropriate to each individual cluster Girardi et al. 5

used a pro�le indicator, Ip, which is the ratio between �v(< 0:2 � Rvir), the line{of{sight
velocity dispersion computed by considering the galaxies within the central cluster region of
radius R = 0:2� Rvir, and the global �v . For 33 clusters we can compute the pro�le indicator
and the relative correction; for 18 clusters we cannot de�ne the kind of pro�le and we assume
isotropic orbits (20% of correction).

4 Comparison with X-ray and Lensing Results

We collect X-ray luminosities, in general bolometric ones, Lbol;X , and temperature, TX , for 38
and 22 clusters, respectively (most of the data coming from the compilation of Wu et al. 23; cf.
Girardi & Mezzetti in preparation for the complete reference list).

Figure 3 shows the LX;bol{�v relation compared to that found by Borgani et al. 2 for nearby
clusters. Excluding the leftmost point (J2175.15TR), the resulting bisecting linear regression is

log(Lbol;X=10
44erg s�1) = 4:4+1:8

�1:0 log(�v=km s�1)� 12:6+3:0
�5:4 ; (2)

where errors come from the di�erence with respect to the direct and the inverse linear regression
(Isobe et al. 25, OLS methods). Our Lbol;X{�v relation is consistent with that of nearby clusters
(e.g., White et al. 26; Borgani et al. 2; Wu et al. 23). As for the point excluded, note that our
analysis of J2175.15TR is based only on 19 galaxies, and the estimate of �v is recovered from
only eight member galaxies (with an error larger than 100%).



Figure 4: �v{TX relation for distant (open circles) and nearby clusters (�lled circles). For the distant clusters, the
circle size decreases with the number of galaxies used to estimate �v: the smaller and the larger circles indicate
Nm � 30, and 10 � Nm < 30, respectively. For the nearby clusters we show results as reported by Girardi et
al.5, all having �v estimated at least with 30 galaxy redshifts, and TX taken from David et al.27 and from White
et al.26. The solid line is the bisecting linear regression for the nearby clusters as computed by Girardi et al.5.
The dashed line represents the model with the equipartition of energy per unit mass between gas and galaxy

components (�spec = 1).

Figure 4 shows the �v{TX relation compared to that of nearby clusters, as reported by Girardi
et al.5. As for distant clusters, the data have a too small dynamical range to attempt a linear �t:
the visual inspection of Figure 4 suggests no di�erence with nearby clusters in agreement with the
result of by Mushotzky & Scharf28 and Wu et al.23. We obtain �spec = �2v=(kT=�mp) = 0:88+0:14

�0:17,
where � = 0:58 is the mean molecular weight and mp the proton mass (median value with errors
at the 90% c.l.). This value of �spec is in good agreement with the value of �spec = 0:88� 0:04
for nearby clusters (cf. Girardi et al. 5). Moreover, we �nd no correlation between �spec and
redshift (cf. also Wu et al. 23).

Under the assumption that the hot di�use gas is in hydrostatic and isothermal equilib-
rium with the underlying gravitational potentials of clusters, one can obtain the X{ray cluster
masses provided that the gas temperature and radial pro�le of gas distribution are known.
The availability of TX allow us to compute the mass within Rvir for 22 clusters according to
MX = (3�fit;gaskT � Rvir)=(G�mp) � (Rvir=Rx)

2=[1 + (Rvir=Rx)
2], where we adopt the gas dis-

tribution given by the �{model with typical parameters (slope �fit;gas = 2=3 and core radius
Rx = 0:125 h�1Mpc , e.g., Jones & Forman 29). We �nd mass values consistent with our optical
virial estimates, i.e. M=MX = 1:02 (0:86{1:32) for the median value and the range at the 90%
c.l..

As for gravitational lensing masses, we resort to estimates found in the literature. We collect
projected estimates from weak gravitational lensing analysis, ML, for 18 clusters (cf. Girardi &
Mezzetti in preparation for the complete reference list). In order to compare our optical virial
masses to ML, we project and rescale our masses M within the corresponding radius using the
�tted galaxy spatial distribution. We obtain Mopt;L=ML = 1:30(0:63{2:13) (median value and
range at the 90% c.l.). Moreover, we do not �nd any correlation between M=MX or Mopt;L=ML

and redshift.

Our �nding are in agreement with other recent studies which �nd, on average, no evidence



of discrepancy between di�erent mass estimates as computed within large radii, thus suggesting
that distant clusters are nor far from global dynamical equilibrium (e.g., Allen 30; Lewis et al. 7).
Note that we avoid to consider mass determination in very central cluster regions since our
analysis of cluster members give poor constrains on mass distribution on these scales. Indeed,
the assumption of dynamical equilibrium seem to break down in the very central regions as
suggested by comparisons with strong lensing mass estimates (e.g., Allen 30; Lewis et al. 7).

5 Summary and Conclusions

In order to properly analyze the possible dynamical evolution of galaxy clusters we apply the
same procedures already applied on a sample of nearby clusters (170 clusters at z < 0:15 from
ENACS and other literature, Girardi et al. 5, cf. also Fadda et al. 3) to a corresponding sample
of distant clusters.

We consider a sample of 51 distant galaxy clusters at z > 0:15 (< z >� 0:3), each cluster
having at least 10 galaxies with available redshift in the literature. A part from three cluster
�eld showing two overlapping peaks in their velocity distribution and so large uncertainties in
their dynamics, 45 �elds show only one peak in their velocity distribution and three �elds show
two separable peaks for a total of 51 well de�ned cluster systems. These 51 systems are those
used in the comparison with nearby clusters (160 well de�ned systems).

We select member galaxies, analyze the velocity dispersion pro�les, and evaluate in a homo-
geneous way cluster velocity dispersions and virial masses.

As a main general result, we do not �nd any signi�cant evidence for dynamical evolution of
galaxy clusters. More in detail, our results can be summarized as follows.

� The galaxy spatial distribution is similar to that of nearby clusters, i.e. the �t to a
King{like pro�le gives a two-dimensional slope of � = 0:7 and a very small core radius of
Rc = 0:05 h�1Mpc.

� When data are good enough, the integrated velocity dispersion pro�les of distant clusters
show a behavior similar to those of nearby clusters, i.e. they show strongly increasing or
decreasing behaviors in the central cluster regions, but are attening out in the external
regions suggesting that in such regions, they are no longer a�ected by velocity anisotropies.

� The average velocity dispersion pro�le can be explained by a model with isotropic orbits,
which well describe also nearby clusters. Possible evidences for more radial orbits are not
statistically signi�cant.

� There is no evidence of evolution in both Lbol;X{�v and �v{TX relations, thus in agreement
with previous results (Mushotzky & Scharf 28; Borgani et al. 2).

Moreover, on average, within the large scatter of present data, we �nd no signi�cant evidence
of discrepancies between our virial mass estimates and those from X{ray and gravitational lensing
data, thus suggesting that distant clusters are not far from global dynamical equilibrium (cf.
also Allen 30; Lewis et al. 7).

We conclude that the typical redshift of cluster formation is higher than that of our sample
in agreement with previous suggestions (e.g., Schindler31 ; Mushotzky32). In particular, we agree
with preliminary results by Adami et al.33, who applied the same techniques used for the nearby
ENACS clusters on 15 distant clusters, (< z >� 0:4) from the Palomar Distant Cluster Survey
(Postman et al. 34).

Although some clusters at very high redshift, e.g. z > 0:8, are already known (e.g., Gioia
et al. 35; Rosati et al. 36), the construction of a large cluster sample useful for studying internal
dynamics will require a strong observational e�ort. We stress how both the poor number of



galaxies and the small spatial extension of some clusters can a�ect the robustness of their
resulting properties.
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