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NUMERICAL STUDY OF THE COSMIC SHEAR
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We study the cosmic shear statistics using the ray-tracing simulation combined with a set
of large N -body simulations. We �rst describe our models and numerical method, and then
present some selected results. We especially focus on; (1) e�ects of the deection of light rays
and the lens-lens coupling on the skewness of the lensing convergence which are neglected in
making theoretical predictions of the cosmic shear statistics. (2) e�ects of the source clustering
on a measurement of the skewness of the lensing convergence.

1 Introduction

The cosmic shear statistics have been known as a powerful tool for probing the large-scale struc-
ture formation as well as for placing the constraint on the cosmological parameters 1. Recently,
four independent groups have reported the detection of the cosmic shear variance 2;3;4;5. Al-
though those detections were done with relatively small �elds which limit its accuracy, on going
wide �eld cosmic shear surveys will provide a precious measurement of the cosmic shear variance
as well as higher order statistics such like the skewness of the lensing convergence 6.

Since the pioneering work by Gunn7, there has been a great progress in the theoretical study
of the cosmic shear statistics8. The analytical formulae for computing the theoretical prediction
of the cosmic shear statistics are based on the perturbation theory of the cosmic density �eld
combined with the nonlinear clustering ansatz. Their accuracy and limitations should be tested
against numerical simulations 9;10. Numerical simulations are also used to study the possible
noises caused by, e.g., the cosmic variance and the clustering of sources as well as the clustering
between sources and lenses (the, so-called, source clustering).

We study the cosmic shear statistics using the ray-tracing simulation combined with a set
of large N -body simulations. Our study aims; (1) to test the theoretical predictions against the
numerical simulations (2) to examine higher order statistics of the lensing convergence (3) to
simulate the observation to examine the possible systematic e�ects, e.g., the source clustering.
In this contribution, we �rst describe, briey, our models and methods of numerical simulations.
Then, we present some selected results, details are presented in 11.



Table 1: Parameters in three cluster normalized CDM Models


m 
� �8 h

SCDM 1.0 0.0 0.6 0.5
OCDM 0.3 0.0 0.85 0.7
�CDM 0.3 0.7 0.9 0.7

Figure 1: Tiling con�guration of simulation boxes. Dashed lines shows the angular comoving distance of �2:5Æ.

2 Models and methods

We consider three cluster normalized cold dark matter (CDM) models, parameters in the models
are summarized in Table 1. N -body simulations were performed with a vectorized particle-mesh
(PM) code. They use 2562 � 512 particles and the same number of force mesh in a periodic
rectangular comoving box and use the light-cone output 11;12. In order to generate the density
�eld from z = 0 to z � 3, we performed 11, 12 and 13 independent simulations for SCDM,
OCDM and �CDMmodel, respectively. We adopted the tiling con�guration of the boxes10, i.e.,
the box size of each realization is chosen so that we have a �eld of view of 5� 5 square degrees
(see Figure 1).

Light ray trajectories are followed through the density �eld generated byN -body simulations.
The multiple lens-plane algorithm was used for the ray-tracing13. The lens planes (which are, at
the same time, source planes) are located between z = 0 and z � 3 at intervals of 80h�1Mpc. For
each ray, position of the ray on each lens plane is computed, and then the lensing magni�cation
matrix, Mij , is computed at the ray position on each plane. The lensing convergence, shear and
net rotation are expressed by � = (M11 +M22)=2, 1 = (M11 �M22)=2, 2 = (M12 +M21)=2,
and ! = (M12�M21)=2, respectively. We performed 40 realizations for each model changing the
underlying density �eld (i.e., making random shifts of boxes to x and y directions (perpendicular
to the line-of-sight) using the periodic boundary condition in N -body simulations). For each
realization, 5122 rays are traced backward from the observer point. The initial ray directions
are set on 5122 grids with the grid spacing of 5Æ=512 � 0:59 arcmin.



Figure 2: Two-point correlation functions of the lens-
ing convergence. Sources are assumed to be a single

redshift of zs � 1.

Figure 3: Power spectra of the lensing convergence.
l = 2�=� � 2:16 � 104=�(arcmin). Sources are as-

sumed to be a single redshift of zs � 1.

3 Results and discussion

3.1 Numerical resolution

Figure 2 shows the two-point correlations functions of the lensing convergence for three models
compared with the linear (dotted lines) and nonlinear (solid lines) predictions 14. Results of
the ray-tracing simulations agree with the nonlinear predictions on scales between 2 arcmin and
50 arcmin. The loss of the power on large scales is a result of the lack of powers on scales
larger than N -body simulation boxes. While the small scale resolution limit comes from the
resolution of the N -body simulations. The spatial resolution of our PM N -body simulation
is simply �x = Lbox=256. The angular resolution is limited by the angle subtended to �x,
i.e., �� � �x=DA(z), where DA(z) denotes the comoving angular diameter distance. Since we
determined the box size so that the tiled set of boxes yields the �eld-of-view of 5�5 square degrees
except boxes at very lower redshifts (see Figure 1), the angular resolution is roughly estimated
by 5degree=256 � 1:2arcmin. The discrepancy between this estimation and the angular scales
of the saturation of the convergence two-point correlation function found in Figure 2 (about 2
arcmin) may be accounted by bad angular resolution at lower redshifts.

Figure 3 shows the power spectrum of the lensing convergence for three models compared
with the linear (dotted lines) and nonlinear (solid lines) predictions 14. Since l = 2�=� � 2:16�
104=�(arcmin), one may expect from the angular resolution found in the two-point correlation
functions that the results of the ray-tracing simulations should agree with nonlinear prediction
up to l � 104. The discrepancy between this expectation and the scale where the measurements
start roll-o� (l � 103) is due to the smoothing e�ect in the Fourier transformation using grids. In
our case, it is estimated that the measurements start to deviate from the nonlinear prediction at
a scale smaller about 0.1-0.2 times than the true scale. It is, therefore, said that our ray-tracing
simulation combined with the tiled set of large PM N -body simulations yields the angular
resolution of � � 2 or l � 105 for a source redshift of zs = 1. It is important to note that the
angular resolution varies with the source redshift, the resolution becomes better (worse) with
increasing (decreasing) the source redshift.



Figure 4: S3 (upper panels) and �S3 (lower panels) as
a function of the smoothing angle �0. Comparison of
the skewness parameter S3 computed from the results
of full and approximated ray-tracing simulations (see
text for details). Sources are assumed to be a single

redshift of zs � 1.

Figure 5: S3 (upper panels) and �S3 (lower panels)
as a function of the smoothing angle �0. Comparison
of the skewness parameter S3 computed from the re-
sults of the ray-tracing simulations with and without

source clustering (see text for details).

3.2 E�ects of neglecting the lens-lens couplings and of the Born approximation on the skewness

of the lensing convergence

The theoretical predictions of the cosmic shear statistics have been made based on the pertur-
bation theory approach in which the moments of the lensing convergence are calculated from
a perturbative expansion of the density contrast 16. In this approach, the linear order term of

the convergence, �(1) only arises from the linear order density contrast, Æ
(1)
mass. Note that the

deection of the light ray trajectory is neglected in computation of �(1), this is the, so-called,

Born approximation16;17. The second order term arises not only Æ
(2)
mass but also both the coupling

between the lenses located at di�erent redshifts, the, so-called, lens-lens coupling and the deec-
tion of the ray trajectory. The latter two are usually neglected in computation of the skewness
as well as the variance of the lensing convergence. For the computation of the variance, it is
known that those two e�ects are safely neglected 9;16. Bernardeau et al. 16 examined the e�ects
of those two terms on the convergence skewness using the linear and quasi-linear theory and
found that they are suÆciently small and can be neglected safely. There is, however, a priori
no reason to believe that dropping the lens-lens coupling terms and the Born approximation are
still correct in the non-linear regime.

We examined numerically the e�ects of neglecting the lens-lens couplings and of the Born
approximation on the skewness of the lensing convergence. In addition to the usual full ray-
tracing, we also performed the approximated ray-tracing, that is, the deection of light rays and
all lens-lens coupling terms are neglected in the ray-tracing simulations. From the results of those
two kinds of ray-tracing, we compute the skewness parameter de�ned by S3 =< �3 > = < �2 >2

16. Results are shown in Figure 4. It is clear from Figure 4 that neglecting the lens-lens couplings
and of the Born approximation on the skewness of the lensing convergence has no signi�cant
e�ect. Although we only display a case for zs = 1 in SCDM model, we found the similar results
for other cosmological models and for other source redshifts11. van Waerbeke et al. 15 computed
the e�ects of lens-lens couplings and Born approximation using the semi-analytic approach and
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Figure 6: An illustration of the correlation between the lensing potential (contour lines) and the population of
sources (denoted by symbols \GAL").

found a good agreement between the numerical results and the semi-analytic predictions.

3.3 Source clustering e�ect on the skewness of the lensing convergence

Bernardeau 18 pointed out that the correlation between the source galaxies and the lensing po-
tential reduces the amplitude of the skewness and showed that the e�ect is sensitive to the
redshift distribution of sources. The source clustering e�ects result from three facts, namely,
(1) The source galaxies are not randomly distributed in the sky but are correlated. (2) The
distribution of the source galaxies traces somehow the matter �eld. (3) The redshift distri-
bution of source galaxies is rather broad and its width depends on a criterion of the source
selection. Consequently, distribution of source galaxies is overlapped with the distribution of
lensing structures, and thus the source galaxies are correlated somehow with the lensing poten-
tial. This correlation causes systematic e�ects on measurements of the cosmic shear, that may
be illustrated as follows; Figure 6 shows, for example, the distribution of sources (denoted by
symbols \GAL") and the lensing potential (contour lines). For a line-of-sight 1 (LOS 1), the
distant galaxies are lensed by the lensing potential located at intermediate distance and thus
have the high positive lensing signal. This high signal is reduced by the excess of the foreground
sources which correlated with the foreground lensing potential and have a low lensing signal.
While for a line-of-sight 2 (LOS 2), the distant sources are lensed by the foreground void and
thus have a negative lensing signal. This negative signal is emphasized because of the lack of
foreground sources in the void. Accordingly, the probability distribution function of the lensing
signal, i.e. the lensing convergence, modi�ed, typically becomes more symmetric than that of
the case of a random distribution of source galaxies. As a result, the amplitude of skewness of
the lensing convergence drops.

We examine e�ects of the source clustering e�ect using a toy model of the galaxy distribution
combined with the ray-tracing simulation. We adopt the canonical parametric model of the
redshift distribution of source galaxies; ns(z) / (z=z�)

� exp[�(z=z�)
�]. The distribution of the

sources are chosen so that it linearly follows the underlying dark matter distribution in which
the ray-tracing simulations were done, i.e., Ægal / Æmass, accordingly there is no bias between the
distribution of the matter and galaxies. For each galaxy, we assign the lensing signals, lensing
convergence and shear, by interpolating them from four closest ray positions on the nearest



source plane. Then we average the lensing convergences over sources located within an angular
radius, �0, that is, we compute the top-hat �ltered lensing convergences. It should be noted that
we did not take the intrinsic ellipticity of the galaxies into account. We also generate the random
distribution of source galaxies. In this case, the sources have the same redshift distribution as
the clustering case, but the angular distribution is random. Accordingly there is no source
clustering e�ect in this case. We also compute the the top-hat �ltered lensing convergences for
the random distribution case in the same way as the above.

The results are shown in Figure 5 in which the parameters in the redshift distribution of
sources are chosen by � = 3, � = 1:8 and z� = 0:67. Figure 5 indicate that the source clustering
have a non-negligible e�ects on a measurement of the convergence skewness.

We examined the source clustering in detail using more realistic models of the galaxy dis-
tributions and also using the semi-analytic approach 19. We found that the source clustering
reduces the skewness about 10 percents for a realistic model of the redshift distribution of the
sources and also found that the e�ect strongly depends on the bias. We also found that the
source clustering e�ect can be reduced below a few percents by (1) going to a deep magnitude
to increase the mean source redshift and (2) using only fainter images to reduce the width of
the distribution of source galaxies.
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