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We present N-body, hydrodynamical simulations of galaxy clusters with and without radiative
cooling. We �nd from the non-radiative simulations that most clusters are not well-�t by a
Navarro, Frenk & White 7 (hereafter NFW) pro�le, but that nevertheless the NFW model
accurately predicts the temperature-mass relations. When measured within a sphere enclosing
a �xed overdensity, these all follow the self-similar form, T /M2=3, however the normalisation
is lower than in observed clusters. The temperature-mass relations for properties measured
within a �xed physical radius are signi�cantly steeper then this. The e�ect of adding radiative
cooling is to raise the temperature and lower the X-ray luminosity (except in uncorrected,
cooling ow clusters). This tends to bring the simulated LX -TX relation into agreement with
the observations. We speculate that preheating of group/cluster gas may be unnecessary.

1 Introduction

In this paper, we present results from two sets of simulations of galaxy clusters. We challenge
two widely-held beliefs:

� that clusters have a universal density pro�le (the NFW pro�le)

� that preheating is required to steepen the LX -TX relation.

2 Adiabatic simulations

2.1 The simulations

We have carried out three simulations with 1283 particles each of gas and dark matter. The
cosmological parameters were as follows: density parameter, 
 = 1; cosmological constant,
� = 0; power spectrum shape parameter, � = 0:21; and a linearly-extrapolated root-mean-square



Table 1: Run parameters for each of the simulations: box size/h�1Mpc; softening/h�1kpc; dark-matter particle
mass/h�1M�; minimum resolved cluster mass/h�1M�; minimum ratio of the 2-body relaxation time in the core

of the clusters to the age of the Universe.

box soft Mdm Mlim tr;min=t0
50.0 20 1:6� 1010 8:22� 1012 2.4
112.9 50 1:8� 1011 9:47� 1013 3.0
153.0 68 4:6� 1011 2:37� 1014 3.4

dispersion of the density uctuations on a scale 8 h�1 Mpc, �8 = 0:60. The three simulations
had di�erent box-sizes, corresponding to di�erent mass-resolutions, as listed in Table 1.

Full details of the simulations and cluster extraction procedure can be found in Thomas et al.14.

2.2 Density pro�les

It is often stated that dark matter halos in CDM cosmologies have a \universal density pro�le",
also known as the NFW pro�le (Navarro, Frenk & White 7):

� =
�0

x (1 + x)2
; (1)

where r = ax is the radius and �0 and a are free parameters. In order to test this assertion, we
introduce a more general pro�le,

� =
�0

x (1 + x)s
; (2)

where s is a constant. We integrate Equation 2 to generate circular velocity curves, then search
for the best-�t for each of our clusters. The results are shown in Figure 1. The asymptotic
density pro�le at large radii has a slope of �(s+ 1). However, this is not always representative
of the slope at two virial radii, the outer radius to which we �t the rotation curve. Hence we
plot with solid symbols in the Figure only those clusters for which the two di�er by less than
0:2s|this corresponds to a characteristic radius a < 0:5r180.

A quick glance at Figure 1 makes the suggestion that s = 2 is a universal density pro�le
seem surprising. However, it is hard to measure the density pro�les in the outer parts of clusters
with any degree of accuracy and the answer that one gets often depends upon the radial extent
of the �t. At one virial radius, the slope of the density pro�le is far from �(s + 1) and so the
asymptotic slope is poorly constained. In addition, s and a are strongly correlated and it is often
possible to get a reasonable �t by forcing s = 2 and allowing a to vary. Hence the statement that
the pro�le within one virial radius is `consistent with and NFW pro�le' is largely meaningless.
It is for this reason that we choose to �t the pro�le within two virial radii instead.

We de�ne clusters to be consistent with an NFW pro�le if the asymptotic slope of their
density pro�le lies between �2:8 and �3:2 (i.e. 1:8 < s < 2:2). Just under a quarter of the
clusters meet this criterion.

The best-�t pro�les of many clusters plotted with open symbols show a high value of s.
However, this does not indicate steep density pro�les at large radii because the best-�t core
radii rise to compensate. Rather, it indicates that the functional form of the generalised NFW
pro�le is a poor representation of the cluster. As an example consider the cluster shown in
Figure 2. This is a smooth cluster: visually it appears spherically-symmetric and it has little
substructure. In addition, the best-�tting ellipsoid (see Thomas et al. 13) is amongst the most
spherical of any cluster in our sample with axial ratios of 1.14:1.0:0.94. However, the density
pro�le, even out to 0.8 virial radii, is poorly �t by an NFW pro�le (dashed line). Also, it shows
a sharp change in slope at this radius that cannot be matched by any generalised NFW pro�le.



Figure 1: s versus M180 for all the clusters. The solid symbols represent clusters for which the slope of the density
pro�le at two virial radii is within 25 per cent of the asymptotic slope at large radii.

Figure 2: The density pro�le for one of the clusters. The dashed line shows the best-�t NFW model. The dotted
line shows the best-�t generalised NFW model with s = 10. The solid line shows a better, alternative model, as

described in the text.



The dotted line shows a generalised NFW model with s = 10: and a = 3:1 r180. In order to
reproduce the sharp decline in density at the virial radius, s has to be very large, but this then
leads to a density pro�le that is declining far too rapidly in the outer parts of the cluster (and
would steepen even more at radii larger than those shown in the Figure). A better representation
of the density pro�le in this case is given by the dotted line which corresponds to the function

� =
�0

x (1 + x2)s=2
; (3)

where x = r=a as before, and s = 3:2, a = 0:40 r180. This value of s is a much better estimate
of the asymptotic slope of the density pro�le at large radii.

It can be seen from Figure 1 that the line s = 3 roughly separates the solid from the open
symbols in the upper half of the plot. Thus, where the outer slope of the density pro�le is
well-de�ned, it generally lies between �3 (an NFW pro�le) and �4 (a Hernquist pro�le). The
open symbols represent clusters, like that shown in Figure 2, that have a sharper break in their
density pro�le than can be �t by a generalised NFW pro�le: these comprise about 30 per cent
of the total cluster sample.

The open symbols that correspond to values of s less than 2 are mostly clusters that show
some degree of substructure, for which the density pro�le is not well-de�ned. These comprise
another 16 percent of the cluster population.

Although the spread in s is large, there is a weak trend for s to increase with mass. To
make this more evident, we de�ne an average low-mass and an average high-mass cluster by
selecting all relatively smooth clusters, S < 0:2, in the mass ranges M < 1:2� 1013h�1M� and
M > 3:0 � 1014h�1M�. The resulting pro�les are extremely well-�t by our theoretical model
with slopes of s = 2:0 and s = 2:3, respectively.

It is clear from the above analysis that there is no universal pro�le for dark matter halos. A
substantial proportion of clusters show obvious substructure, and even those that don't exhibit
a wide variety of functional forms for the spherically-averaged density pro�les of halos.

Despite all this, the concept of a universal density pro�le is an attractive one. It makes
modelling of observed clusters much simpler and it has the advantage that there is only one
free parameter|the ratio of the characteristic radius in the NFW formula to the virial radius,
x180 = r180=a(s = 2).a Therefore, we wish to see how well one can approximate cluster properties
by assuming that they all follow the NFW pro�le, in de�ance of the above results.

The best-�t values of x180 as a function of mass are shown in Figure 3. There is a general
trend of decreasing concentration as one moves to higher masses, but once again the scatter is
large. The solid line in Figure 3 corresponds to the function

x180 = 3:7

�
M

1015h�1M�

��0:1
: (4)

The 86 per cent of the clusters with modest substructure are spread equally above and below
the line. We shall use this relation in the analysis that follows to see how well the simple NFW
model predicts the measured scaling relations between temperature and mass.

2.3 X-ray temperature-mass relations within a �xed overdensity

The relationship between X-ray temperature and mass within the virial radius is shown in
Figure 4. The dashed line shows the best-�t relation from Evrard, Metzler & Navarro3 (hereafter

aNFW de�ne x200 to be the `concentration parameter', presumably using 200 as an approximation for the
virial overdensity; in this paper we will use the term to stand for x180 instead|there is little di�erence between
the two.



Figure 3: The measured concentration assuming an NFW pro�le, x180, versus mass within the virial radius, M180,
for all the clusters. Clusters with signi�cant substructure are plotted with open symbols; the others with solid

symbols.

EMN),

k TX;180 � 7:85

�
M180

1015h�1M�

�0:67�0:02
keV: (5)

They extracted 58 clusters in the temperature range 1{10keV, from three di�erent sets of cos-
mological simulations with a variety of cosmological parameters. We have used the information
given in their paper to interpolate their results to an overdensity of 180|our results are in good
agreement.

The prediction assuming hydrostatic equilibrium of gas in an NFW pro�le with isotropic
velocity dispersions is shown by the solid line on the Figure (for details of the calculation see
Thomas et al. 14). It gives temperatures that are a reasonable �t to the data, but are slightly
too low.

The most extensive observational investigation of the TX -M180 relation is by Horner, Mushotzky
& Scharf 4 who used many di�erent ways to determine the mass within the virial radius. Their
preferred measure, based on X-ray emissivity and temperature pro�les, is shown as a dotted line
in Figure 4. From this it is clear that either the measured cluster masses are too low, or more
likely dissipationless simulations predict X-ray temperatures that are smaller than the observed
values. This might be thought to provide evidence for heating of the intracluster medium, but
we will argue below that radiative cooling may have the same e�ect!

In Figure 5, we show a similar plot to Figure 4, but for the X-ray temperature-mass relation
within an overdensity contour of 1000. Once again, the isotropic NFW model slightly under-
predicts the X-ray temperatures (but agrees with the results of EMN). The best-�t power law
is consistent with the self-similar prediction

k TX;1000 � 13:0

�
M1000

1015h�1M�

�0:67
keV: (6)



Figure 4: The X-ray temperature versus mass within the virial radius. The dashed line shows the best-�t power
law; the dotted line shows the best observational results from Horner, Mushotzky & Scharf and the solid line

shows the prediction from the isotropic NFW model.

Figure 5: The X-ray temperature versus mass within a spherical shell enclosing an overdensity of 1000. The dashed
line shows the best-�t power law, the dotted line shows the observational results from Nevalainen, Markevitch &

Forman (2000), and the solid line shows the prediction from the isotropic NFW model.



Figure 6: X-ray temperature versus mass, for properties averaged within the Abell radius, for all the clusters. The
dashed line shows the best-�t power law. The dotted line is the relation from Equation 5 for properties averaged

within the virial radius. The solid line shows a corrected relation based on the NFW model.

The dotted line shows the observational results from Nevalainen, Markevitch & Forman 8.
The observed temperatures are again higher than the predictions from this non-radiative model
but in a way that is now mass-dependent|this is consistent with our expectation that the e�ects
of cooling and/or heating would be greater in lower-mass clusters.

2.4 Temperature-mass relations within the Abell radius

On a cautionary note, we should point out that if one measures cluster properties within a �xed
radius, rather than a �xed overdensity, then the deviation from the self-similar scaling relations
can be quite large. This is shown in Figure 6 where we plot, for properties averaged within the
Abell radius, emission-weighted temperature versus mass. The best-�t power law, shown as the
dashed line, has a slope of 0.81.

The reason for the steeper slope is that, for low-mass clusters, the Abell radius is greater
than the virial radius and so we are averaging properties over a larger volume than before.
This has the e�ect of lowering the X-ray temperature slightly (because the X-ray temperature
is heavily weighted by emission from the centre of the cluster this e�ect is small), but greatly
increasing the mass. For high-mass clusters, however, the virial radii are similar to the Abell
radii and so there is no change.

3 Simulations with radiative cooling

We next contrast the properties of clusters drawn from simulations with and without radiative
cooling. These results are presented at greater length in Pearce et al. 10.



Table 2: The main parameters for each cosmology. The parameters for the cooling and non-cooling runs were
identical.

Cosmology �CDM SCDM

 0.3 1.0
� 0.7 0.0

b 0.03 0.06
�8 0.9 0.6
h 0.7 0.5
boxsize (h�1Mpc) 70 50
Mdm (h�1M�) 1:4� 1010 1:6� 1010

Mgas (h
�1M�) 1:4� 109 1:0� 109

soft (h�1kpc) 10. 10.
Zmet (solar) 0.3 0.3

3.1 The simulations

The simulations each follow 2 million gas and 2 million dark matter particles in a box of side
100Mpc. We have performed simulations in two types of at cold dark matter cosmology, one
standard (SCDM) and one with a cosmological constant (�CDM), with parameters as listed in
Table 2. In addition to these two simulations which both included the e�ects of radiative cooling,
we repeated the �CDM model without cooling. We will concentrate here in the di�erences
between the cooling and non-cooling �CDM runs.

The properties of the galaxies in the two simulations with radiative cooling have been de-
scribed in Pearce et al. 9. The mass and spatial distribution of the galactic population, and the
overall cooled gas fraction are well matched to the observations.

3.2 Intracluster medium pro�les

In the next few plots, we show spherically-averaged pro�les of the intracluster medium for the
20 largest clusters in the box. The pro�les have been centred on the peak of the gas density.

Gas entropy pro�les

Gas entropy pro�les (and also density and temperature pro�les, below) were obtained using only
those particles with a temperature exceeding 12 000K as we wish to exclude cold gas which lies
within galaxies or recently tidally disrupted objects. The speci�c entropy pro�le is shown in
Figure 7. We plot the quantity (T=K)=(�=��)2=3, where T is the temperature and � the density,
measured in units of the mean gas density, ��.

Let us contrast the results for the �CDM runs with and without cooling. Firstly, note that
the entropy at the virial radii is very similar in each case|this is because cooling has had little
e�ect at these large radii. Between the virial radius and about 0.2 times the virial radius (less for
the largest cluster), the entropy pro�les for the cooling run are shallower than in the non-cooling
run. This con�rms the hypothesis of Thomas & Couchman 12 that cooling is able to raise the
entropy of the intracluster medium by dragging in high-entropy material from the outer regions
of the cluster.

Within about 0.2 virial radii, the entropy pro�les again steepen|it is within this \cooling
radius" that the cooling time is short enough to allow signi�cant cooling of the gas within the
lifetime of the cluster. By the time we get to the innermost bins in the Figure, there seems to



Figure 7: The radial speci�c entropy pro�les of the 20 largest, distinct halos extracted from each of the three
simulations. Plotted is the mean value of T=n2=3 within successive spherical shells. Each pro�le has been scaled
to the virial radius. Those pro�les marked as dotted lines are for clusters that contain signi�cant substructure.



Figure 8: The radial gas density pro�le of the 20 largest halos found within each simulation. Those halos containing
signi�cant substructure are shown as dotted lines. Plotted is the mean gas density within successive spherical
shells. All the halos are scaled to the virial radius and gas overdensity relative to the baryonic cosmic mean.

be a spread in the entropy of the clusters in the cooling run, with some having higher entropy
and some lower entropy than the corresponding clusters in the non-cooling run.

Gas density pro�les

The radial gas density pro�les are displayed in Figure 8. The e�ect of cooling is to lower the
gas density at all radii within the virial radius. The suppression is greatest, a factor of three, at
about 0.1 times the virial radius, roughly corresponding to the kink in the entropy pro�les seen
in Figure 7. Although the density gradients are shallower, they do not roll over into constant-
density inner core regions. In fact, for the larger clusters, the density continues to rise further
into the centre of the cluster than before, so that the central density is close to that in the
non-cooling case.

The pro�le of the largest object in both gas and dark matter for each of the runs is shown
in Figure 9. The arrow indicates a radius of 100h�1kpc. Without cooling, the gas density is
shallower than that of the dark matter within 0.1 times the virial radius, but this inner, resolved
slope of the density pro�le is still � / r�1 with no sign of a constant-density core. As the
temperature is approximately constant within this region (see Figure 10), the X-ray luminosity
is convergent and dominated by emission from around 200h�1kpc (0.1 times the virial radius).

With cooling, the largest cluster exhibits a central density spike due to the presence of a



Figure 9: The radial dark matter (solid line) and gas (dotted line) density pro�le within the virial radius of the
largest dark matter halo extracted from each simulation. Each curve is scaled to the virial radius of the halo and
overdensity of the appropriate phase relative to the mean cosmic density of that phase. In all three runs there
is less gas within the virial radius than dark matter, relative to the cosmic mean of each species. No constant

density core is found in the cooling runs. The arrow indicates a scale of 100h�1kpc.



massive central galaxy. This hot gas has a very steep radial density pro�le, � / r�3, and would
be classi�ed observationally as a cooling ow of 60h�2M�/yr onto the central cluster galaxy.
Between radii of about 40h�1kpc and 1 h�1Mpc, the density pro�le is a power law, � / r�1:4,
steepening at larger radii. Thus the X-ray luminosity (excluding the cooling ow) comes from
a much more extended region than in the non-cooling case.

In conclusion, the gas density has been reduced by the inux of high-entropy material, as
expected. However, this has not given rise to constant-density inner cores. In fact, if anything,
the density pro�les now continue as a power-law closer into the centre of the clusters.

3.3 Radial temperature pro�les

Radial temperature pro�les are shown in Figure 10. They rise inwards from the virial radius
by about a factor of two, peaking at about 0.1 times the virial radius and then declining again,
very gradually, in the cluster centre. Cooling makes little di�erence to the temperature pro�les,
except that corresponding clusters in the �CDM runs reach a higher peak temperature when
cooling is implemented, due to the inow of higher entropy gas. The temperatures are very
similar at the virial radius, but are about 1.5 times higher at their peak than before. Two
clusters show a precipitous decline in temperature in the cluster centre, one of these being the
largest cluster|this is evidence for a cooling ow.

3.4 X-ray luminosity pro�les

The total X-ray luminosity within the virial radius of each of the clusters is much reduced for
clusters in the simulation with cooling compared to those those from the corresponding non-
cooling run. This contradicts the previous results of Katz & White 5, Suginohara & Ostriker 11

and Lewis et al. 6 who all found the X-ray luminosity increased if cooling was turned on. The
reason for the discrepancy is that we have decoupled the hot and cold gas, thus greatly sup-
pressing the cooling of the inowing, high-entropy gas in our simulations compared to previous
ones. This causes a large reduction in the mass of the brightest cluster galaxy compared to those
produced by previous work. Our galaxies have reasonable luminosities, mass-to-light ratios and
number counts for a volume of this size.

Note that estimates of X-ray luminosity from the non-cooling run are not really meaningful.
A radiation rate of this magnitude can only be sustained for a short time before depleting the
intracluster medium of gas, as in the cooling runs. The X-ray luminosity in the cooling runs is
more physically self-consistent and numerically robust. The X-ray luminosity within the cooling
radius is approximately equal to the enthalpy of the gas divided by the age of the cluster.

We plot these bolometric luminosities as a function of radius for each of our clusters in
Figure 11. The relative contribution to the total X-ray emission from di�erent radii is very
di�erent for the cooling and non-cooling simulations. Without cooling all the relaxed clusters
show very similar emission pro�les, with only a small contribution to the total emission coming
from the very centre. Once radiative cooling is turned on the radial emission pro�les span a
much broader range. For two of the clusters, a central cooling ow type emission is clearly visible
| contributing 50 percent and 80 percent of the total X-ray ux. For each of the other clusters,
the radius enclosing half of the total emission is much larger than that for the simulation without
cooling.

3.5 LX{TX relation

There has been much debate in the literature centering on the X-ray cluster LX versus TX cor-
relation. The emission weighted mean temperature is plotted against the bolometric luminosity



Figure 10: The radial gas temperature pro�le found within each of the 20 halos extracted from each cosmology.
Clusters with signi�cant substructure are marked as dotted lines. All the halos are scaled to the virial radius and
temperatures (calculated as the mass-weighted mean temperature of the gas within successive spherical shells)
are in Kelvin. With cooling the cluster temperature reaches a slightly higher maximum at a larger fraction of the

virial radius whereas the temperature at the virial radius is very similar.



Figure 11: The fraction of the total bolometric luminosity that is emitted from within the speci�ed radius for
each of the clusters. Clusters with signi�cant substructure are shown as dotted lines.



Figure 12: The luminosity-temperature relation for all the clusters. Open symbols refer to those clusters with
signi�cant substructure, �lled to those without. The small symbols are the observation data from David, Jones
& Forman. The majority of our clusters are small because the simulation volume is only 100Mpc on a side but
span a reasonable range. The values plotted are the emission weighted mean temperature converted to keV and
the bolometric luminosity within the virial radius. The regression line is that of Eke, Navarro & Frenk, Figure 16.
and represents a �t to the X-ray luminosity of their �CDM clusters. The crosses show where the two �CDM
clusters indicated would appear on the diagram if their central cooling ow emission was removed from both the

bolometric X-ray and emission weighted temperature calculations.

within the virial radius for all our clusters in Figure 12. The �lled symbols represent the relaxed
clusters and the open symbols denote those clusters that show signi�cant substructure.

The e�ect of cooling is, in general, to slightly raise the temperature but to greatly reduce the
X-ray luminosity. Exceptions are the cooling ow clusters where the large amount of emission
from gas cooling onto the central galaxy gives rise to a lower temperature than in the non-cooling
case. There are two of these, easily visible on the plot, in the �CDM run; we have plotted their
new locations, when the central cooling ow is omitted, using crosses linked to the old location
via arrows. In both cases less than 2 percent of the hot, X-ray emitting particles were excised
to make this calculation.

All 3 sets of clusters display a positive correlation between LX and TX , although there are
insuÆcient numbers to tie the trend down very tightly. It is clear from the comments in the
preceding paragraph that the nature of the correlation depends critically upon whether one
removes the cooling ow emission or not. We believe that a clearer picture arises if this is done.

The regression line in Figure 12 is from Eke, Navarro & Frenk2 and corresponds to LX / T 2

X .
Our non-cooling clusters �t reasonably well with this relation. The cooling clusters lie below



this line. Given that we expect cooling to be less important in the most massive clusters (the
absolute value of the cooling time and the ratio of the cooling time to the dynamical time both
increase with cluster mass), then we would expect the clusters with radiative cooling to lie closer
to the regression line at higher TX . Thus the e�ect of cooling should be to steepen the LX{TX
relation. We hope to test this with more simulations of higher mass clusters.

4 Conclusions

� Clusters do not have a universal density pro�le, although a model of gas in hydrostatic
equilibrium within an isotropic NFW pro�le for the dark matter does reproduce the mea-
sured temperature-mass relation reasonably well.

� We speculate that preheating may not be required to explain the steep LX{TX relation in
galaxy groups and clusters as radiative cooling has a similar e�ect.
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